NLP(IV):使用VADER进行情感分析

本文介绍了如何在NLP中运用VADER进行情感分析,包括安装VADER、计算文本情感正负比率、去除stop words和标点,以及进行综合情感分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NLP(IV):使用VADER进行情感分析

安装VADER

使用pip安装即可。

pip install vaderSentiment
计算文本情感积极与消极的比率

以下的代码返回积极的推文列表以及消极的推文列表,以及所有推文的平均指数。

import nltk
# need to download 'stopwords' before using it.
nltk.download('stopwords')
from nltk.corpus import stopwords
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from nltk.tokenize import word_tokenize
import string

def computeSentimentOfSentences(sentenceData):
  # Input: a list of sentences from tweets
  # Output: a list of sentences from positive tweets, average compound from all the input sentences
  sid_obj = SentimentIntensityAnalyzer()
  pos_sents = []
  neg_sents = []
  compound_sum = 0.0
  for sentence in sentenceData:
    sentiment_dict = sid_obj.polarity_scores(sentence)
    compound_sum += sentiment_dict['compound']
    if sentiment_dict['compound'] >= 0.05:
      pos_sents.append(sentence)
    if sentiment_dict
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值