ICLR2025 Oral | IDOL:变分推理 + 稀疏约束,时间序列的瞬时因果关系 “无所遁形”!

本篇论文来自ICLR2025Oral文章,文章提出了一个新的IDOL框架,可以从具有瞬时依赖关系的时间序列数据中识别潜在因果过程

小时给大家整理了全部77篇ICLR2025前沿时序合集+视频学习资源/公开课等关注工🀄昊“时序大模型”发送“资料”扫码回复“ICLR2025时序合集”即可自取~其他顶会前沿时序技术,小时也有整理,回复对应会议关键词也能获取资料合集~(AAAI25,ICML25,ICDE25

文章信息

论文名称:On the Identification of Temporal Causal Representation with Instantaneous Dependence

论文作者:Zijian Li, Yifan Shen, Kaitao Zheng, Ruichu Cai, Xiangchen Song, Mingming Gong, Guangyi Chen, Kun Zhang

图片

研究背景

时间序列分析在天气、金融、人类活动识别等多个领域有广泛应用,其核心目标之一是捕捉数据背后的潜在因果过程。多数现有方法假设潜在因果过程不存在瞬时关系;部分考虑瞬时因果关系的方法则需要对潜在变量进行干预或对观测值进行分组,而这些在现实场景中难以实现。

因此文章提出IDOL 框架,目的是在更宽松的假设下,实现对具有瞬时依赖关系的潜在因果过程的识别。

图片

模型框架

核心假设:引入稀疏潜在过程假设,即潜在变量的时间延迟关系和瞬时关系均具有稀疏性(如人体关节间的连接稀疏,符合现实数据特性)。

图片

模型理论:

  • 马尔可夫等价类识别:基于足够变异性(数据分布的丰富变化)和稀疏约束,结合时间序列的上下文信息,证明潜在因果过程可识别至马尔可夫等价类。

  • 因果图扩展识别:若瞬时边的端点不共享相同的时间延迟父节点,可进一步识别完整的因果图。

图片

模型架构:

  • 时间变分推理:通过编码器和解码器估计潜在变量,重构观测数据。

  • 稀疏正则化:采用基于梯度的 L1 正则化,约束潜在过程的稀疏性,确保可识别性。

图片

实验数据

模拟数据集:在 6 个合成数据集(含不同潜在变量维度和稀疏性)上,IDOL 的 MCC(平均相关系数)显著优于 β-VAE、TDRL、G-CaRL 等基线,验证了其识别潜在因果过程的能力;在违反稀疏假设的密集数据集上性能下降,符合理论预期。

图片

图片

真实世界数据集:在 Human3.6M 和 HumanEva-I 人体运动预测任务中,IDOL 在 MSE 和 MAE 指标上优于 Autoformer、TimesNet 等方法,尤其在复杂运动(如坐姿、行走)中提升 4%-34%,证明其现实有效性。

图片

小小总结

IDOL 框架,针对含瞬时依赖的时间序列,通过稀疏潜在过程假设,在无需干预或观测分组的情况下,实现潜在因果过程的识别。

模型结合时间变分推理与稀疏正则化,在模拟数据和人体运动预测任务中表现优于现有方法,验证了其有效性。

需要2025顶会前沿时序合集及时序课程资源,关注工🀄昊“时序大模型”发送“资料”扫码回复关键字自取就行~

图片

关注小时,持续学习前沿时序技术!

目前尚未有针对 ICML 2025 的具体会议安排或已发表的时间序列研究论文,因为该年度的会议还未举行。然而,可以基于当前的趋势推测未来可能的研究方向。 ### 可能的研究趋势 时间序列析作为机器学习领域的重要支,在近年来得到了广泛关注。以下是一些潜在的方向: #### 谱采样方法改进 谱采样马尔可夫链蒙特卡洛 (Spectral Subsampling MCMC) 方法已经在处理平稳时间序列方面取得了显著进展[^2]。未来的扩展可能会集中在非平稳时间序列上,或者通过更高效的采样策略来减少计算复杂度。 ```python import numpy as np def spectral_subsample_mcmc(data, subsample_rate=0.5): """ A simplified example of Spectral Subsampling MCMC. Parameters: data (np.ndarray): Input time series data. subsample_rate (float): Rate at which to subsample the spectrum. Returns: np.ndarray: Subsampled spectral representation. """ fft_data = np.fft.rfft(data) sampled_indices = np.random.choice(len(fft_data), int(subsample_rate * len(fft_data)), replace=False) return fft_data[sampled_indices] time_series = np.array([1, 2, 3, 4, 5]) subsampled_spectrum = spectral_subsample_mcmc(time_series) print(subsampled_spectrum) ``` #### 长表示学习 随着数据量的增长,“长表示”(Long Representation)成为了一个重要话题。ICML 2021 已经讨论了一些与此相关的工作[^1]。预计到 2025 年,这一领域的研究将进一步深入,特别是在高效存储和快速检索大规模时间序列模式方面的技术革新。 #### 多模态融合 多模态数据(如视频帧、传感器读数等)中的时间依赖关系建模也是一个活跃的研究领域。结合深度学习框架下的注意力机制与图神经网络可能是解决此类问题的有效途径之一。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值