本篇论文来自ICLR2025的Oral文章,文章提出了一个新的IDOL框架,可以从具有瞬时依赖关系的时间序列数据中识别潜在因果过程。
小时给大家整理了全部77篇ICLR2025前沿时序合集+视频学习资源/公开课等,关注工🀄昊“时序大模型”发送“资料”扫码回复“ICLR2025时序合集”即可自取~其他顶会前沿时序技术,小时也有整理,回复对应会议关键词也能获取资料合集~(AAAI25,ICML25,ICDE25)
文章信息
论文名称:On the Identification of Temporal Causal Representation with Instantaneous Dependence
论文作者:Zijian Li, Yifan Shen, Kaitao Zheng, Ruichu Cai, Xiangchen Song, Mingming Gong, Guangyi Chen, Kun Zhang
研究背景
时间序列分析在天气、金融、人类活动识别等多个领域有广泛应用,其核心目标之一是捕捉数据背后的潜在因果过程。多数现有方法假设潜在因果过程不存在瞬时关系;部分考虑瞬时因果关系的方法则需要对潜在变量进行干预或对观测值进行分组,而这些在现实场景中难以实现。
因此文章提出IDOL 框架,目的是在更宽松的假设下,实现对具有瞬时依赖关系的潜在因果过程的识别。
模型框架
核心假设:引入稀疏潜在过程假设,即潜在变量的时间延迟关系和瞬时关系均具有稀疏性(如人体关节间的连接稀疏,符合现实数据特性)。
模型理论:
-
马尔可夫等价类识别:基于足够变异性(数据分布的丰富变化)和稀疏约束,结合时间序列的上下文信息,证明潜在因果过程可识别至马尔可夫等价类。
-
因果图扩展识别:若瞬时边的端点不共享相同的时间延迟父节点,可进一步识别完整的因果图。
模型架构:
-
时间变分推理:通过编码器和解码器估计潜在变量,重构观测数据。
-
稀疏正则化:采用基于梯度的 L1 正则化,约束潜在过程的稀疏性,确保可识别性。
实验数据
模拟数据集:在 6 个合成数据集(含不同潜在变量维度和稀疏性)上,IDOL 的 MCC(平均相关系数)显著优于 β-VAE、TDRL、G-CaRL 等基线,验证了其识别潜在因果过程的能力;在违反稀疏假设的密集数据集上性能下降,符合理论预期。
真实世界数据集:在 Human3.6M 和 HumanEva-I 人体运动预测任务中,IDOL 在 MSE 和 MAE 指标上优于 Autoformer、TimesNet 等方法,尤其在复杂运动(如坐姿、行走)中提升 4%-34%,证明其现实有效性。
小小总结
IDOL 框架,针对含瞬时依赖的时间序列,通过稀疏潜在过程假设,在无需干预或观测分组的情况下,实现潜在因果过程的识别。
模型结合时间变分推理与稀疏正则化,在模拟数据和人体运动预测任务中表现优于现有方法,验证了其有效性。
需要2025顶会前沿时序合集及时序课程资源,关注工🀄昊“时序大模型”发送“资料”扫码回复关键字自取就行~
关注小时,持续学习前沿时序技术!