本篇论文来自KDD2025第二轮投稿,最新时序前沿技术,针对不同预测场景重新训练,在工业应用中实用性不足的问题,提出了一个新的CMA框架。
了解顶会最新技术,紧跟科研潮流,研究与写作才能保持在时代一线,全部73篇KDD2025(1+2轮)前沿时序合集小时已经整理好了,在功🀄浩“时序大模型”发送“资料”扫码回复“KDD2025时序合集”即可自取~其他顶会时序合集也可以回复相关顶会名称自取哈~(AAAI25,ICLR25,ICML25等)
文章信息
论文名称:CMA:AUnified Contextual Meta-Adaptation Methodology for Time-Series Denoising and Prediction
论文作者:Haiqi Jiang、Ying Ding、Chenjie Pan、Aimin Huang、Rui Chen、Chenyou Fan
研究背景
现有时间序列预测方法存在显著局限性,传统自回归模型(如基于 RNN、Transformer 的模型)和非自回归模型(如 TimeDiff、Diffusion - TS)均依赖固定的历史长度和未来预测窗口。这导致它们在处理非平稳模式、长期依赖关系和动态变化模式时灵活性不足,且针对不同预测场景需重新训练,难以满足实际工业应用需求。
因此提出了一个新的Contextual Meta - Adaptation(CMA)框架以解决上面的问题。
模型框架
CMA 是一个整合去噪扩散能力、联合上下文学习流程和高效模型更新策略的统一框架,可通过单模型实现对可变历史长度、未来预测范围及跨域迁移的适配。有三个主要部分:
扩散适配器(Diffusion Adapter):将时间步t嵌入注意力层的 QKV 投影,与时间序列补丁令牌结合,支持交替预测和逐步去噪扩散,能灵活集成到 iTransformer、TimeXer 等主流骨干模型。
联合上下文学习流程:通过交替生成与历史数据对齐的序列和基于当前模式适配模型,捕捉长期趋势与变化模式,实现扩展未来预测范围和跨域预测。
高效模型更新策略:
-
训练阶段:采用基于梯度的元学习进行全参数微调,通过元适应损失(包含观测重建损失和负对数似然损失)优化参数,使模型快速适应数据域潜在模式。
-
测试阶段:提出低秩测试时适应(LoRTA),仅更新额外的 LoRA 权重,冻结预训练全参数。该方式保持高性能,降低 98.8% 计算成本,提升 27% 速度。
有三个核心能力:
-
上下文内学习(In-context Learning):无需重新训练,可基于任意长度历史数据学习,适配不同历史长度,捕捉多样 temporal 关系。
-
扩展上下文学习(Ex-context Learning):以自回归方式外推至任意未来步数,利用固定短范围基模型通过 LoRTA 扩展至更长未来预测范围,无需重新训练。
-
跨上下文学习(Cross-context Learning):实现知识从源域到目标域的迁移,在目标域数据有限时,结合观测历史和最新预测进行模型适配,有效预测 unseen 上下文。
实验数据
数据集:使用 6 个学术数据集(如 ETTm2、Electricity、Traffic 等)和 4 个工业数据集(如中国碳交易、加密货币、股票市场数据等)。
对比方法:与 Autoformer、iTransformer、TimeXer 等主流预测模型,DiffusionTS 生成技术,以及 FSNet、Tent、CoTTA 等持续学习和测试时适应方法对比。
关键结果:
-
学术数据集平均提升 7%,工业数据集平均提升 16%。
-
上下文内学习中,CMA-In-T 较 TimeXer 在不同未来预测范围(F96/F192/F336)的 MSE 分别降低 7%、6%、10%;CMA-In-i 较 iTransformer 对应降低 4%、4%、9%。
-
扩展上下文学习中,CMA-Ex 系列在长预测范围优于骨干模型,且超越 TTA 基线 11-23%。
-
跨域学习中,在碳市场和加密货币市场迁移任务中,MSE 较基线降低 17-36%,效率显著提升。
消融实验:验证了模型适配、元适应步数、负对数似然正则项及 LoRTA 的有效性,各组件对性能提升至关重要。
小小总结
CMA通过元学习驱动的扩散过程统一持续学习和测试时适应,提升预测性能并保证骨干模型灵活性。能实现上下文内、扩展上下文学习及跨域适配,支持可变历史长度和未来预测范围。提出 LoRTA,大幅降低计算成本并提升效率,在学术和工业数据集上取得显著性能提升,验证了方法有效性和实用性。
2025顶会前沿时序合集,简介处关注,回复关键字即可自取~
关注小时,持续学习前沿时序技术!