KDD2025 | FUSION:北大力作,首次在小波域实现多模态融合,用扩散模型破解微服务故障诊断难题!

本篇论文来自KDD2025第二轮,最新前沿时序技术,首次在小波域实现多模态融合,结合频域与时域特征,提出FUSION框架,通过多模态频域融合和不确定性时空建模,显著提升微服务异常检测性能

了解顶会最新技术,紧跟科研潮流,研究与写作才能保持在时代一线,全部73篇KDD2025(1+2轮)前沿时序合集小时已经整理好了,在功🀄浩“时序大模型”发送“资料”扫码回复“KDD2025时序合集”即可自取~其他顶会时序合集也可以回复相关顶会名称自取哈~(AAAI25,ICLR25,ICML25等

文章信息

论文名称:Enhancing Microservices Anomaly Detection via Multimodal Data Fusion in the Wavelet Domain and Spatiotemporal Graph-based Diffusion Probabilistic Model

论文作者:Kaiqi Ding、Yuanmu Ma、Zijian Song、Kaigui Bian

图片

研究背景

微服务架构在现代软件系统中广泛应用,但系统规模扩大和复杂性增加使异常检测成为关键难题。异常可能导致数据丢失、业务中断等严重后果,因此 AWS、Azure 等云服务商均投入大量资源研究相关技术。现有方法存在两大核心缺陷:

  • 多模态数据挖掘不充分:多数方法仅采用简单拼接的早期融合或局限于双模态(指标与日志)的注意力融合,忽视三模态(指标、日志、追踪)协同分析;且缺乏频域分析,难以捕捉非平稳数据的周期性模式,仅靠时域分析无法全面反映数据复杂性。

  • 时空特征学习不足:现有模型多为确定性预测,未考虑微服务数据因多源、复杂依赖产生的不确定性;同时对服务调用依赖(空间关系)和时间动态变化的建模不完整,部分模型忽略 temporal 特征或 spatial 依赖。

因此提出了一个新的框架-FUSION,以解决上述提到的问题

图片

模型框架

图片

FUSION 框架整合了小波域多模态融合与不确定性感知的时空集成,分为三个关键阶段:

1. 多模态数据序列化:

  • 指标序列化:将多维时间序列数据标准化为统一格式。

  • 日志序列化:通过 Drain3 提取日志模板,结合 BERT 嵌入和 DBSCAN 聚类,将日志转换为时序特征。

  • 追踪序列化:从调用链中提取 latency、请求量等指标,构建时序表示。

  • 数据融合:通过 Z-score 标准化和滑动窗口拼接,形成多模态联合特征。

2. 小波域多模态融合:

  • 离散小波变换(DWT):将多模态数据分解为高频细节系数(短期波动)和低频近似系数(长期趋势),捕捉频域特征。

  • 皮尔逊相关注意力机制:计算跨模态变量的相关性,动态调整小波系数权重,强化关键信息

  • 逆小波变换**(IDWT):重构融合后的时域序列,保留频域增强特征。

3. 条件扩散网络

  • 时空图构建:以服务实例为节点、调用关系为边,构建微服务拓扑图。

  • 扩散概率模型(DDPM):基于 U 型结构整合时序卷积(TCN)和图卷积(GCN),建模时空依赖;通过随机扩散步骤捕捉不确定性,实现非自回归多步预测。

  • 异常评估:采用连续排序概率得分(CRPS)量化预测分布与实际值的偏差,结合动态阈值(NDT)识别异常。

图片

实验数据

数据集与基线:在三个公开数据集(AIOPS 2022、GAIA、SocialNetwork)和一个真实邮件系统(MMS)上验证,对比 9 种基线方法(如 TraceVAE、DeepTraLog、MSTGAD 等)。

图片

图片

重点实验结果:

  • 检测精度:F1-score 在四个数据集上分别提升 2.70%-129.27%、3.62%-137.37%、2.70%-86.16% 和 10.21%-168.83%,在 MMS 数据集上达到 93.0%。

  • 噪声鲁棒性:在F1-score 下降幅度仅为 1.82%-7.09%,显著低于基线方法。

  • 效率:通过非自回归预测和选择性采样策略,平衡性能与计算成本,满足在线诊断需求,训练和检测时间优于多数多模态基线。

图片

图片

消融实验:移除小波域融合后,MMS 数据集 F1-score 下降 16%;移除 U 型结构、时空建模组件均导致显著性能衰退,证明各组件必要性。

图片

图片

小小总结

首次在小波域实现多模态融合,结合频域与时域特征;提出基于时空图的扩散概率模型,同时建模时空依赖与不确定性;通过动态阈值机制提升鲁棒性。

FUSION 框架通过多模态频域融合和不确定性时空建模,显著提升微服务异常检测性能,尤其在复杂真实环境中表现优异。历史重构与未来预测双重功能支持故障诊断和预防性维护。

2025顶会前沿时序合集,攻🀄豪关注“时序大模型”,回复“资料”即可自取~

关注小时,持续学习前沿时序技术!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值