本篇论文来自KDD2025第二轮,最新前沿时序技术,提出了一个ModePlait 模型,首次实现了在流式场景中同时发现时间演化因果关系和预测未来值。
了解顶会最新技术,紧跟科研潮流,研究与写作才能保持在时代一线,全部73篇KDD2025(1+2轮)前沿时序合集小时已经整理好了,在功🀄浩“时序大模型”发送“资料”扫码回复“KDD2025时序合集”即可自取~其他顶会时序合集也可以回复相关顶会名称自取哈~(AAAI25,ICLR25,ICML25等)
文章信息
论文名称:Modeling Time-evolving Causality over Data Streams
论文作者: Naoki Chihara、Yasuko Matsubara、Ren Fujiwara、Yasushi Sakurai
研究背景
在物联网、Web 活动、传染病传播等场景中,多变量时间序列数据持续高速生成,这些数据间的因果关系会随时间动态变化(即 “时间演化因果性”)。然而现有方法存在局限:
-
多数因果发现方法假设因果关系固定不变,无法适应流数据动态特性;
-
主流预测模型难以在流式场景中高效更新参数,且未充分利用因果关系。
因此,如何在半无限长多变量数据流中实时发现时间演化因果关系并准确预测未来值,成为核心挑战。
为了解决上述问题,文章提出了ModePlait 模型。
模型框架
ModePlait 基础原理:基于结构方程模型(SEM)构建,将变量分为内生变量和外生变量,假设因果关系随外生变量的动态变化而演化。
有三个关键特性:
-
高效性:通过自适应检测动态模式的转变,发现多变量数据流中的时间演化因果关系。
-
准确性:理论上保证因果关系的可识别性,同时支持流式场景下的因果发现与未来值预测。
-
可扩展性:计算复杂度与数据流长度无关,适用于超大型序列分析。
三个核心组件:
-
内在信号:相互独立的非高斯信号集合,刻画外生变量的演化规律。
-
自动力学因子集:通过时间延迟嵌入和 Hankel 矩阵分解,提取每个内在信号的潜在时序动态,用模态和特征值表示。特征值的模和幅角分别对应衰减率和时间频率,可反映动态特性(如增长 / 衰减、振荡)。
-
Regime 机制:将数据流划分为多个动态模式(regimes),每个 regime 由混合矩阵(demixing matrix)和自动力学因子集描述,因果关系随 regime 转变而变化。
四个算法流程:
-
RegimeCreation:从当前窗口数据中估计单个 regime 参数,包括通过独立成分分析(ICA)分解数据得到混合矩阵,以及计算自动力学因子集。
-
ModeEstimator:增量更新参数集,通过优化初始条件匹配当前窗口数据;若不匹配则搜索现有 regime 或创建新 regime。
-
ModeGenerator:基于当前 regime 预测未来值,并通过解决混合矩阵的排序和缩放不确定性,生成因果邻接矩阵。
-
RegimeUpdater:当使用现有 regime 时,利用新数据增量更新其参数(混合矩阵和自动力学因子集)。
实验数据
数据集:涵盖合成数据和真实世界数据,包括 COVID-19 感染数据(5 国每日感染数)、Web 搜索数据、运动捕捉数据等。
因果发现准确性:在结构汉明距离(SHD)和结构干预距离(SID)指标上,显著优于 CASPER、NOTEARS、LiNGAM 等基线方法,证明其捕捉时间演化因果关系的能力。
预测性能:在 RMSE 和 MAE 指标上,超越 TimesNet、DeepAR、ARIMA 等主流模型,尤其在长时序预测(10-15 步)中优势明显。
消融实验:移除因果模块后,预测误差显著增加,验证因果关系对提升预测精度的关键作用。
可扩展性:计算时间与数据流长度无关,比基线方法快达 1500 倍,适用于实时流式处理。
小小总结
ModePlait 首次实现了在流式场景中同时发现时间演化因果关系和预测未来值,通过 regime 机制和增量更新策略,在有效性、准确性和可扩展性上表现优异,为动态系统分析、实时决策等领域提供了新解决方案。
2025顶会前沿时序合集,攻🀄豪关注“时序大模型”,回复“资料”即可自取~
关注小时,持续学习前沿时序技术!