
【卷积神经网络】
文章平均质量分 92
随着计算机硬件的升级与性能的提高,运算量已不再是阻碍深度学习发展的难题。卷积神经网络(Convolution Neural Network,CNN)是深度学习中一项代表性的工作,其雏形是 1998 年 LeCun 提出的 LeNet-5 模型。如今,卷积神经网络已被广泛应用于计算机视觉领域。
洋洋Young
专注于微电子与数字信号处理领域的技术爱好者,曾在国家级数学建模竞赛中荣获省级三等奖。现任FPGA开发工程师,专攻视频图像处理技术,热衷于探索前沿算法并实践于实际项目中。期待与您共享创新观点和技术探讨,一起成长!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【卷积神经网络】YOLO 算法原理
在计算机视觉领域中,目标检测(Object Detection)是一个具有挑战性且重要的新兴研究方向。目标检测不仅要预测图片中是否包含待检测的目标,还需要在图片中指出它们的位置。2015年,Joseph Redmon, Santosh Divvala 等人提出第一个 YOLO 模型,该模型具有实时性高、支持多物体检测的特点,已成为目标检测领域热门的研究算法。本文主要介绍 YOLO 算法及其基本原理。原创 2023-10-29 21:42:08 · 9856 阅读 · 2 评论 -
【卷积神经网络】ResNets 残差网络
通常来说,增加卷积神经网络的层数有利于提高模型的准确率,但是深层的神经网络也变得难以训练的,因为存在梯度消失与梯度爆炸问题。Microsoft 亚洲研究院的 Kaiming He 等人提出了一个残差学习框架,以简化对 CNN 网络的训练。通过将层重新表述为参考层输入的学习残差函数,深层神经网络变得更容易优化,并且可以从显著增加网络的准确性。本文主要介绍ResNet 残差网络的基本结构(Residual block)及其工作原理。原创 2023-09-20 08:00:00 · 515 阅读 · 0 评论 -
【卷积神经网络】MNIST 手写体识别
LeNet-5 是经典卷积神经网络之一,于 1998 年由 Yann LeCun 等人提出。LeNet-5 网络使用了卷积层、池化层和全连接层,实现可以应用于手写体识别的卷积神经网络。TensorFlow 内置了MNIST 手写体数据集,可以很方便地读取数据集,并应用于后续的模型训练过程中。本文主要记录了如何使用 TensorFlow 2.0 实现 MNIST 手写体识别模型。原创 2023-08-29 20:50:26 · 1875 阅读 · 0 评论 -
【卷积神经网络】经典网络之 LeNet-5, AlexNet 与 VGG-16
随着计算机硬件的升级与性能的提高,运算量已不再是阻碍深度学习发展的难题。卷积神经网络(Convolution Neural Network,CNN)是深度学习中一项代表性的工作,其雏形是 1998 年 LeCun 提出的 LeNet-5 模型。如今,卷积神经网络已被广泛应用于计算机视觉领域。本文主要介绍卷积神经网络中的经典网络,包括 LeNet-5, AlexNet 和 VGG-16.原创 2023-08-22 21:07:39 · 796 阅读 · 0 评论 -
【卷积神经网络】卷积,池化,全连接
随着计算机硬件的升级与性能的提高,运算量已不再是阻碍深度学习发展的难题。卷积神经网络(Convolution Neural Network,CNN)是深度学习中一项代表性的工作,CNN 是受人脑对图像的理解过程启发而提出的模型,其雏形是 1998 年 LeCun 提出的 LeNet-5 模型。如今,卷积神经网络已被广泛应用于计算机视觉领域。本文主要介绍卷积神经网络中几个基础的运算,包括卷积、池化与全连接。原创 2023-08-14 21:02:46 · 1476 阅读 · 0 评论