完全实现QMF滤波器分析(用matlab实现)

本文详细介绍了两通道正交镜像滤波器组的理论,包括混叠失真、幅度失真、相位失真和量化失真的来源。提出正交镜像滤波器组(QMFB)的设计,其中滤波器H0(z)和H1(z)的幅度响应满足特定条件。实验结果显示,重建输出信号与理想输出信号的误差极小,证明了设计的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

两通道正交镜像滤波器组理论

  • 一个两通道正交镜像滤波器组如图1所示,在分析滤波器组一侧,输入信号(设为宽带信号)被分成K个子频带信号(窄带信号),通过抽取可降低采样率;在综合滤波器一侧,通过零值内插和带通滤波可以重建原来的信号。

在这里插入图片描述

  • 对于一个给定的信号,经过分析滤波器后,再进行抽取、编码、传输,可以通过零值内插、综合滤波器滤波、求和运算得到恢复和重建。但是重建后的信号并不能与原始信号完全相同,两者之间存在着误差,主要包括:

    (1)混叠失真。由抽取和内插产生的混叠和镜像带来的误差,导致分析滤波器组和综合滤波器组的频带不能完全分开;
    (2)幅度失真。由于分析和综合滤波器组的频带在通带内不是全通函数,其幅频特性波纹产生的误差;
    (3)相位失真。由滤波器相频特性的非线性所产生的误差;
    (4)量化失真。由编、解码产生的误差,与量化噪声相似,这类误差无法完全消除,只能设法减小[4]。因此,在设计QMF组时,就需要综合考虑如何减小和消除上述的各类误差。消除混叠失真一种简单形式采取:

G0(z)=H0(z)……(1)G_{0}(z)=H_{0}(z)……(1)G0(z)=H0(z)1

G1(z)=−H1(z)……(2)G_{1}(z)=-H_{1}(z)……(2)G1(z)=H1(z)2
当两通道无混叠滤波器组的分解滤波器满足:
H0(z)=H1(−z)……(3)H_{0}(z)=H_{1}(-z)……(3)H0(z)=H1(z)3
时,该滤波器组为正交镜像滤波器组(quadrature mirror filter bank,QMFB)。且滤波器的幅度特性满足:
∣H1(ejw)∣=∣H0(ej(π+w)∣|H_{1}(e^{jw})|=|H_{0}(e^{j(\pi+w})|H1(ejw)=H0(ej(π+w)
由(1)、(2)、(3)式可知:
G0(z)=H0(z);G1(z)=−H1(z)=−H0(−z)G_{0}(z)=H_{0}(z); G_{1}(z)=-H_{1}(z)=-H_{0}(-z)G0(z)=H0(z);G

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值