使用逐步逼近法对给定数值x求开根号。
逐步逼近法说明:从0开始逐步累加步长值。
步长=0.0001,epsilon(误差)=0.0001
循环继续的条件:
平方值<x
且 |x-平方值| > epsilon
说明与参考
- 数值输出保留6位小数,使用System.out.printf("%.6f\n")
- 求平方,参考Math.pow函数。
- 输入值<0时,返回Double.NaN
输入格式:
任意数值
输出格式:
对每一组输入,在一行中输出其开根号。保留6位小数
输入样例:
-1
0
0.5
0.36
1
6
100
131
输出样例:
NaN
0.000000
0.707100
0.600000
1.000000
2.449500
10.000000
11.445600
代码:
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while (sc.hasNextDouble()) {
double x = sc.nextDouble();
double result = a(x);
System.out.printf("%.6f\n", result);
}
sc.close();
}
public static double a(double x) {
if (x < 0) {
return Double.NaN;
}
double step = 0.0001;
double epsilon = 0.0001;
double current = 0;
double square = Math.pow(current, 2);
while (square < x && Math.abs(x - square) > epsilon) {
current += step;
square = Math.pow(current, 2);
}
return current;
}
}
运行结果: