【pytorch使用tfrecord数据】

pytorch读取tfrecord文件

import os
import sys

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import torchvision
from torchvision import transforms, datasets
from tqdm import tqdm
from tfrecord.torch.dataset import TFRecordDataset

from model import resnet18


def parse_tfrecord(single_record):  #解码tfrecord文件并将其转化成训练时的张量,这个其实是对数据transform
    image, label = single_record    #和tensorflow解码类似
    image = torch.tensor(single_record["image/encoded"]) #先将其转化为向量
    
    label = torch.tensor(single_record["image/label"]).squeeze() 
    #label读出[[label1], [label2],...],如果不降维,你每次取label就直接是一个元组[label1],无法进行训练
    #降维之后就是[label1, label2,...]
    
    image = torchvision.io.decode_jpeg(image).float()
    #将image读出来重组成jpeg,操作和tensorflow类似,.float()是因为网络权重是float类型,两者必须相同
    
    return (image, label)
    

def main():
    device = torch.device("cuda:4" if torch.cuda.is_available() else "cpu")
    print("using {} device.".format(device))
    batch_s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小橘AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值