深度学习自用trick

文章介绍了如何在Pycharm中设置工作目录以显示所有文件,避免双击只打开单个文件的问题。另外,解决了使用tqdm时的报错,通过正确导入方式避免。还展示了如何将日志信息写入txt文件,并在训练过程中记录进度。最后,文章提到了TTA(TestTimeAugmentation)测试数据增强技术,用于提高模型预测的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1、双击py文件,pycharm工作目录只有一个文件

2、加了tqdm报错

3、将日志文件写入txt,防止不显示输出

4、TTA测试数据增强


1、双击py文件,pycharm工作目录只有一个文件

问题描述:作为一个小白,每次打开文件都是双击,但是总会有很多时候遇到如下图的情况,导师编辑文件的时候不方便,明明文件夹里有一堆,但pycharm打开的时候就只有一个

 解决方法:文件--打开--选择你想要的工作目录--确定即可,现在就能看到这个文件夹下的所有内容了

2、加了tqdm报错

        tqdm的引入并不是import tqdm 而是,这样修改后不报错了

from tqdm import tqdm

3、将日志文件写入txt,防止不显示输出

import logging

#初始化文件,filemode=w每次覆盖文件
logging.basicConfig(filename='./log.txt',
                     format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s-%(funcName)s',
                     level=logging.INFO,
                     filemode='w')
#在dataloader前加个enumerate,可以取出序号
 for x,data in tqdm(enumerate(train_dataloader)):

#写入文件
logging.info(
            "[batch:{:<5}/{:<5}] ".format(x, train_data_size//train_dataloader.batch_size) +
            "lr:{:.6f} ".format(optimizer.param_groups[0]['lr']) +
            "loss:{:.6f}  ".format(total_train_loss) +
            "acc:{:.6f} ".format(train_accuracy)
        )

得到结果显示如下,能显示还有多少batch没训练完,在dataloader前加个enmuerate可以取出序号

4、TTA测试数据增强

相当于在测试阶段把一张图片切分为好几张,同时预测,返回最大次数类别。croptransform里填入裁剪的图像大小,最后在测试过程中,用tta_model替换model

import ttach as tta

tta_model = tta.ClassificationTTAWrapper(model, tta.aliases.five_crop_transform(img_size[cfg.model_number],img_size[cfg.model_number]))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雪豹不会梦到瑞克5

妈妈生的

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值