ttach----TTA模型多输入改写,包含image和meta

文章讲述了在使用ttach库进行图像处理时遇到的问题,即模型输入包含images和meta数据导致的错误。作者通过修改ttach/wrappers.py文件的前向传播函数解决了这个问题,但修改后模型的精度略有下降。此外,还提及了可自定义增强方法,如在aliases.py中添加five_crop_transform,以适应384x384的图像。最后,展示了修改后的代码运行示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在调用tta的时候由于我的模型输入有images和meta数据所以报错了,自己更改了下源码,能跑了但是精度低了一点点还有些问题。

1、修改wrappers

找到对应的文件miniconda3/lib/python3.8/site-packages/ttach/wrappers.py

接着按图修改前项传播函数

2、修改增强(选做)

找到文件miniconda3/lib/python3.8/site-packages/ttach/aliases.py,可以自己添加想要的增强

输出测试

tta_model = tta.ClassificationTTAWrapper(model, tta.aliases.five_crop_transform(384,384))
output = tta_model(images,meta)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雪豹不会梦到瑞克5

妈妈生的

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值