模型训练----对输入变量原地操作(inplace operation)报错

文章讲述了在使用PyTorch进行深度学习时,遇到关于梯度计算的错误,原因在于对输入变量x进行了原地操作。通过设置检测异常选项并修改代码结构,解决了这个问题,即避免在forwardpass中直接修改原始值,而是存储在新变量中再进行后续处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

遇到报错one of the variables needed for gradient computation has been modified by an inplace operation。意思是对输入x原地操作(inplace operation),一个变量在反向传播过程中被修改了,而不是按照预期的版本(version 0)更新,导致梯度不正确。

使用这句代码定位报错位置

torch.autograd.set_detect_anomaly(True)

定位到报错后可以修改代码,这是我原来的forword代码,可以看到 x[i] = self.dilate_attention[i](qkv[i][0], qkv[i][1], qkv[i][2])这一句代码,将原来的x值原地替换,不能这样做

for i in range(self.num_dilation):
    x[i] = self.dilate_attention[i](qkv[i][0], qkv[i][1], qkv[i][2])
x = x.permute(1, 2, 3, 0, 4).reshape(B, H, W, C) #3,1,24,24,171-->1,24,24,513
x = self.proj(x)
x = self.proj_drop(x)

我们需要新建变量将这些值存起来最后赋值。新建一个列表,将值存入,最后使用cat统一(会丢失一个维度补上),然后就不报错了

x_i=[]
for i in range(self.num_dilation):
    x_i.append(self.dilate_attention[i](qkv[i][0], qkv[i][1], qkv[i][2]))
x =torch.cat(x_i,dim=0)#3,24,24,171
x = x.unsqueeze(1)#3,1,24,24,171
x = x.permute(1, 2, 3, 0, 4).reshape(B, H, W, C) #3,1,24,24,171-->1,24,24,513
x = self.proj(x)
x = self.proj_drop(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雪豹不会梦到瑞克5

妈妈生的

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值