使用MATLAB进行图像处理的简单的例子

本文介绍了如何利用灰度直方图分析对手机拍摄的书籍图片中的文字进行分割,并尝试了大津算法、移动平均和局部统计等多种方法。同时,还展示了如何在医学图像中对病灶进行分割并应用伪彩色表示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

此内容其实是我当时打大作业的内容,本着开源的精神,我将其分享出来。

示例一 手机拍摄的书页图片处理

【实现需求】

  1. 画出该图像的灰度直方图(有横坐标),指出是否可利用直方图分布的特点来分割图像
  2. 尝试用多种方法(不少于2种)对图像中的文字进行分割,并比较各种方法的优劣
  3. 尝试优化分割结果,去除边框上的黑边等

【原始图像】

在这里插入图片描述

【任务实施】

1.画出该图像的灰度直方图(有横坐标),指出是否可利用直方图分布的特点来分割图像。
(1)首先显示出原图像

%读入图像
f=imread('text-1.tif');
%创建一个新的画板并显示图像
figure,imshow(f);

在这里插入图片描述
(2)画出其灰度直方图,可以看出所有256个灰度值都有值。

%画出其直方图
figure,imhist(f);

在这里插入图片描述
(3)根据直方图的分布可以看出来各个灰度都有一定的分部,不太容易根据直方图中的灰度进行分隔。但是看图片可以很明显的看出有黑白相间,但是有个灰色的图标。

2.尝试用多种方法(不少于2种)对图像中的文字进行分割,并比较各种方法的优劣。
(1)使用大津算法进行分隔,可以发现使用全局的算法并不合适,因为计算的是全局平均阈值,所以把偏黑色的部分也全部处理为了黑色,无法克服这种灰度变化。

%使用大津算法处理并转为黑白图
T=graythresh(gray);
g1=im2bw(f,T);
figure,imshow(g1);

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值