利用机器学习与定位技术提升农业与导航精度
1. 农业中的机器学习应用
在农业领域,借助机器学习技术能为农民提供全面的作物种植指导,涵盖作物建议、产量预测以及详细的种植计划制定等方面。
- 系统流程
1. 收集农民的基本信息,如姓名、所在地等。
2. 协助农民安排种植相关的事宜。
3. 依据收集到的信息,给出作物种植建议并预测产量。
4. 为农民制定包含每一个种植步骤的完整作物种植计划。
graph LR
A[收集农民信息] --> B[安排种植事宜]
B --> C[作物建议与产量预测]
C --> D[制定种植计划]
- 算法研究与数据处理
在项目实施前,对多种机器学习算法进行了研究,包括决策树(DT)、梯度提升回归器、随机森林(RF)、支持向量机(SVM)等。为了构建作物产量预测模型,收集了全球范围内的数据,并将数据集按 70%和 30%的比例分别划分为训练数据和测试数据。经过实验,决策树算法在预测和建议模块中均取得了较高的准确率,分别达到 96%和 91%。在数据处理过程中,使用了 Numpy、Matplotlib、Sklearn、Pandas、Seaborn、OneHotEncoder、MinMax Scalar 等库。 - 模块实现
- 作物产量预测 :传统的作物产量计算通常依赖农民