高精度导航定位算法研究与分析
1. 引言
在当今对精确导航定位需求日益增长的时代,如CAT - I飞机着陆和导弹跟踪等应用,不仅要求位置估计的准确性,还需要估计值的最小方差。传统的导航算法虽然能提供一定的位置估计,但在精度和方差控制上存在不足。因此,研究和分析能够提供最小方差位置估计的算法具有重要意义。
2. 传统递归导航算法分析
2.1 卡尔曼滤波器(KF)
卡尔曼滤波器(KF)本质上是一种状态或参数估计机制,而非传统意义上的滤波器。它基于贝叶斯估计技术,能够对线性系统中可能变化的多个参数(如位置和速度)进行实际估计。
2.1.1 卡尔曼滤波器模块
KF由四个核心模块组成:
- 状态向量和相关协方差 :描述系统所需的参数集合称为状态,KF对这些状态进行估计。状态可以是常量或随时间变化。常见的导航应用中,状态向量 ⃗U 可表示为 ⃗U = [ xu yu zu ˙xu ˙yu ˙zu · · · ]T ,与之关联的是误差协方差矩阵 P,它表示KF估计中的不确定性以及估计误差之间的相关性。
- 系统模型 :系统模型 f s(⃗U) + W P ,也称为过程或时间传播模型,描述了卡尔曼滤波器状态 ⃗U 和误差协方差矩阵 P 随时间的变化。状态的不确定性会增加,以适应在没有测量数据的情况下状态估计的更新。状态真实值的变化被称为系统噪声 WP 或过程噪声。
- 测量向量和相关噪声协方差 :测量向量 ⃗Z 是线性系统的一组同时值,它在功能上依赖于状态向量。所有状态估计都从这些信