35、高精度导航定位算法研究与分析

高精度导航定位算法研究与分析

1. 引言

在当今对精确导航定位需求日益增长的时代,如CAT - I飞机着陆和导弹跟踪等应用,不仅要求位置估计的准确性,还需要估计值的最小方差。传统的导航算法虽然能提供一定的位置估计,但在精度和方差控制上存在不足。因此,研究和分析能够提供最小方差位置估计的算法具有重要意义。

2. 传统递归导航算法分析

2.1 卡尔曼滤波器(KF)

卡尔曼滤波器(KF)本质上是一种状态或参数估计机制,而非传统意义上的滤波器。它基于贝叶斯估计技术,能够对线性系统中可能变化的多个参数(如位置和速度)进行实际估计。

2.1.1 卡尔曼滤波器模块

KF由四个核心模块组成:
- 状态向量和相关协方差 :描述系统所需的参数集合称为状态,KF对这些状态进行估计。状态可以是常量或随时间变化。常见的导航应用中,状态向量 ⃗U 可表示为 ⃗U = [ xu yu zu ˙xu ˙yu ˙zu · · · ]T ,与之关联的是误差协方差矩阵 P,它表示KF估计中的不确定性以及估计误差之间的相关性。
- 系统模型 :系统模型 f s(⃗U) + W P ,也称为过程或时间传播模型,描述了卡尔曼滤波器状态 ⃗U 和误差协方差矩阵 P 随时间的变化。状态的不确定性会增加,以适应在没有测量数据的情况下状态估计的更新。状态真实值的变化被称为系统噪声 WP 或过程噪声。
- 测量向量和相关噪声协方差 :测量向量 ⃗Z 是线性系统的一组同时值,它在功能上依赖于状态向量。所有状态估计都从这些信

资源下载链接为: https://pan.quark.cn/s/140386800631 通用大模型文本分类实践的基本原理是,借助大模型自身较强的理解和推理能力,在使用时需在prompt中明确分类任务目标,并详细解释每个类目概念,尤其要突出类目间的差别。 结合in-context learning思想,有效的prompt应包含分类任务介绍及细节、类目概念解释、每个类目对应的例子和待分类文本。但实际应用中,类目和样本较多易导致prompt过长,影响大模型推理效果,因此可先通过向量检索缩小范围,再由大模型做最终决策。 具体方案为:离线时提前配置好每个类目的概念及对应样本;在线时先对给定query进行向量召回,再将召回结果交给大模型决策。 该方法不更新任何模型参数,直接使用开源模型参数。其架构参考GPT-RE并结合相关实践改写,加入上下文学习以提高准确度,还使用BGE作为向量模型,K-BERT提取文本关键词,拼接召回的相似例子作为上下文输入大模型。 代码实现上,大模型用Qwen2-7B-Instruct,Embedding采用bge-base-zh-v1.5,向量库选择milvus。分类主函数的作用是在向量库中召回相似案例,拼接prompt后输入大模型。 结果方面,使用ICL时accuracy达0.94,比bert文本分类的0.98低0.04,错误类别6个,处理时添加“家居”类别,影响不大;不使用ICL时accuracy为0.88,错误58项,可能未修改prompt有关。 优点是无需训练即可有较好结果,例子优质、类目界限清晰时效果更佳,适合围绕通用大模型api打造工具;缺点是上限不高,仅针对一个分类任务部署大模型不划算,推理速度慢,icl的token使用多,用收费api会有额外开销。 后续可优化的点是利用key-bert提取的关键词,因为核心词语有时比语意更重要。 参考资料包括
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值