阿尔茨海默病海马表面遗传风险因素映射与前庭系统形态测量的研究进展
在医学研究领域,对疾病的深入探究离不开对生物特征和遗传因素的分析。本文将聚焦于两项重要研究:阿尔茨海默病(AD)海马表面遗传风险因素映射,以及前庭系统(VS)形态测量在青少年特发性脊柱侧凸(AIS)疾病分析中的应用。
阿尔茨海默病海马表面遗传风险因素映射
在AD的研究中,了解遗传风险因素对海马表面的影响至关重要。研究人员采用了多种统计分析方法,以揭示这些因素与海马形态之间的关系。
弹性网络回归(EN)
研究使用了弹性网络回归,其目标函数的惩罚项是L1 lasso和L2 ridge惩罚的凸组合:
$\hat{P} {\alpha}(\beta_1, \ldots, \beta {20}) = \alpha \sum_{k=1}^{20} |\beta_k| + (1 - \alpha) \sum_{k=1}^{20} \beta_k^2$
该目标函数有两个参数:$\lambda$控制收缩量,$\alpha$调整lasso和ridge之间的权衡。研究使用Glmnet实现EN,其中$\alpha = 0.5$,$\lambda$通过10折交叉验证选择。
稀疏典型相关分析(SCCA)
为了研究多个表面信号与单核苷酸多态性(SNPs)之间的线性关系,采用了SCCA方法。设$X_i = (SNP_{i,1}, SNP_{i,2}, \ldots, SNP_{i,20})’$为第$i$个受试者的20个SNPs向量,$Y_i = (S_{i,1}, S_{i,2}, \ldots, S_{i,m})’$为$m = 13,2