平滑形状回归与可控加速度及骨科固定板设计优化
1. 平滑形状回归相关内容
在形状回归中,使用矩阵符号来描述形状点系统的当前状态。用向量 (X(t) = (x(t), \dot{x}(t))^t) 来表示,它将每个点的位置和速度连接起来。系统状态通过以下微分方程演化:
(\dot{X}(t) = F(X(t), \alpha(t)) =
\begin{bmatrix}
\dot{x}(t) \
\ddot{x}(t) = K(x(t), x(t))\alpha(t)
\end{bmatrix})
初始条件为 (X(0) = X_0 = (x_0, \dot{x}_0)^t)。
接着将回归准则 (E(X(t))) 重写为 (E(X(t)) = \sum_{t_i} A(X(t_i)) + \gamma \int_{0}^{T} L(X(t), \alpha(t))dt)。设 (\delta E) 是准则 (E) 相对于脉冲向量 (\alpha(t)) 的变化量 (\delta\alpha(t)) 的变化,它会引起状态变量 (X(t)) 的变化:
(\delta E =
\sum_{t_i}
\begin{bmatrix}
dX(t_i)A_i
\end{bmatrix}
\delta X(t_i) + \gamma
\int_{0}^{T}
(\partial_{X(t)}L(t))\delta X(t) + (\partial_{\alpha(t)}L(t))\delta\alpha(t)dt)
ODE(常微分方程)表明这些变化 (\delta