医学图像分割:基于稀疏形状表示的可变形模型与SpringLS方法
在医学图像分割领域,外观和形状是两个关键要素。然而,在某些医学图像分析任务中,由于疾病或伪影的存在,外观线索往往较弱或具有误导性,这可能导致分割结果出现错误。为了解决这一问题,研究人员提出了多种方法,本文将介绍SpringLS方法以及基于稀疏形状表示的可变形分割模型。
1. SpringLS方法概述
Spring Level Sets(SpringLS)是一种将网格和水平集合并为单一表示的方法,旨在实现为其中任一方法设计的模型之间的互操作性。其核心思想是使用三角形表面元素来定义水平集,确保从三角形网格转换为SpringLS时不会丢失形状信息。
1.1 SpringLS的特点
- 拓扑变化与跟踪 :由于SpringLS使用不相连的表面元素,对象可以改变拓扑结构、跟踪点并进行参数变形。
- 边界表示 :辅助水平集提供了模型边界的防水表示,且不会自相交。
- 元素操作规则 :基于水平集表示,已经描述了添加和销毁表面元素的简单规则。
1.2 SpringLS的应用效果
- 图像分割 :使用SpringLS进行图像分割的结果与等效的水平集实现非常相似。
- 结合PDM图谱 :注册的PDM图谱可以转换为SpringLS并进行变形,从而产生比不使用图谱更好的分割效果。 <