55、医学图像分割:基于稀疏形状表示的可变形模型与SpringLS方法

医学图像分割:基于稀疏形状表示的可变形模型与SpringLS方法

在医学图像分割领域,外观和形状是两个关键要素。然而,在某些医学图像分析任务中,由于疾病或伪影的存在,外观线索往往较弱或具有误导性,这可能导致分割结果出现错误。为了解决这一问题,研究人员提出了多种方法,本文将介绍SpringLS方法以及基于稀疏形状表示的可变形分割模型。

1. SpringLS方法概述

Spring Level Sets(SpringLS)是一种将网格和水平集合并为单一表示的方法,旨在实现为其中任一方法设计的模型之间的互操作性。其核心思想是使用三角形表面元素来定义水平集,确保从三角形网格转换为SpringLS时不会丢失形状信息。

1.1 SpringLS的特点

  • 拓扑变化与跟踪 :由于SpringLS使用不相连的表面元素,对象可以改变拓扑结构、跟踪点并进行参数变形。
  • 边界表示 :辅助水平集提供了模型边界的防水表示,且不会自相交。
  • 元素操作规则 :基于水平集表示,已经描述了添加和销毁表面元素的简单规则。

1.2 SpringLS的应用效果

  • 图像分割 :使用SpringLS进行图像分割的结果与等效的水平集实现非常相似。
  • 结合PDM图谱 :注册的PDM图谱可以转换为SpringLS并进行变形,从而产生比不使用图谱更好的分割效果。
  • <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值