基于模式的形态测量学:突破传统VBM的新方法
1. 引言
在神经影像学领域,体素形态测量学(Voxel Based Morphometry,VBM)被广泛用于推断大脑形态的组间差异。它通过将图像数据映射到标准模板空间,然后对变形图进行体素级统计测试,能有效量化高度局部化的组间差异。然而,VBM存在一些明显的弱点:
- 无法考虑多变量组间差异,例如多个体素之间的相互作用。
- 使用大量单变量测试,需要进行多重测试校正。
为了解决这些问题,研究人员提出了一种新的多变量形态测量框架——基于模式的形态测量学(Pattern Based Morphometry,PBM)。PBM基于K-SVD字典学习算法,能够将大量图像表示为少量“基础图像”的稀疏线性组合,从而提取表征组间差异的全局模式。
2. 模式提取方法
PBM算法主要包括以下三个步骤:
1. 生成差异图像 :从数据中生成代表两组(如患者组和对照组)之间差异的图像。
- 假设:任何通过从第2组的相邻图像中减去第1组的图像生成的图像,都可以表示为区分这两组的图像模式字典的线性组合。
- 操作步骤:
- 设第1组为S = {S1, …, Sn},第2组为Z。
- 对于S中的每个元素Si,使用欧几里得度量计算其在Z中的r个最近邻{Z1, …, Zr}。
- 计算差异向量Dij = Si - Zj,其中i ∈ {1, …, n},j ∈ {1, …, r}。
- 将这些差异向量收集到矩阵X = {D11, …, Dnr}中,其中X ∈ IRd×nr,d为图像中的体素数(通常d >>