基于Khalimsky立方复形的纵向皮质厚度估计
在神经影像学领域,从解剖结构中提取4D一致的厚度测量值是一项重要的后处理步骤。例如,大脑皮层厚度的变化在阿尔茨海默病和亨廷顿病等多种疾病中备受关注,有望为诊断和神经退行性病变提供生物标志物。然而,从概率分割中可靠地提取4D一致且亚体素精度的厚度测量值仍是一个尚未解决的问题。
现有厚度估计方法
厚度估计方法主要分为基于表面和基于体素的技术,以下是详细介绍:
- 基于表面的方法 :将三角网格拟合到大脑皮层,计算成本高,尤其是受拓扑约束的影响。此外,表面的参数化可能很复杂,曲率约束和平滑度参数可能会使厚度测量产生偏差。
- 基于体素的方法 :直接从体素网格中提取厚度值,计算效率高,但准确性受图像分辨率和分割质量的限制。总体而言,基于体素的方法可分为以下三个子组:
1. 基于数学形态学的方法 :结合骨架化和区域生长技术,计算点之间的最小欧几里得距离。
2. 基于偏微分方程(PDE)的方法 :在内外表面之间求解拉普拉斯方程,就像它们是带电导体一样,从而在它们之间产生等电位电场线。厚度等于这些等值线法线长度的总和。
3. 基于线积分的方法 :通过找到使每个体素位置上概率分割的线积分最小的方向,计算感兴趣结构的厚度。该方法最近扩展到了4D,但仍然缺乏拓扑一致性。
为了解决拓扑问题,有研究提出了一种统一的、完全自动化的基于Khalimsky的厚度估计算法,该算法结合了上述所有基于体素的方法的特点,具有拓扑正确性