基于分层特征匹配的脑磁共振图像快速形状最近邻搜索
1. 引言
随着公共资源和特定临床实践中大量医学图像的出现,目前大型研究包含数千张图像,未来几年各类图像数据库将增长到数万张。这些数据的可用性催生了对高效图像分析技术和算法的需求。
大型医学图像集的一个用途是辅助图像分割或组织分类。传统的图谱构建方案存在信息损失问题,而多图谱或非参数图谱策略虽有改进,但寻找相似解剖结构的图像需要在测试图像和训练集中的每张图像之间进行配准,对于大型训练集的应用效率仍是难题。
此外,还有其他分析需要在解剖图像集上进行快速最近邻(NN)查找。计算机视觉领域中,空间金字塔匹配(SPM)方法在内容图像检索和识别方面有应用,其为评估解剖形状相似性提供了可能。本文旨在研究将快速分层特征匹配方法应用于医学图像形状查找问题,提出一种快速、基于形状的医学图像近似搜索方法。
2. 方法
该方法通过SPM进行分层特征匹配来测量两张脑磁共振图像的相似度,具体步骤如下:
1. 图像预处理 :进行强度和空间归一化以及边缘保留滤波。
2. 特征提取 :使用Canny边缘检测。
3. 特征标记 :
- 提取所有边缘体素的方向 - 曲率特征进行聚类(使用k - means),得到聚类中心作为可能的边缘模式码本$C = {c_1, \cdots, c_k}$。
- 为减轻硬量化/编码过程中的误差,采用模糊c - 均值分配“软”标签,每个边缘点有属于每个聚类的隶属度值。
4. SPM比较