医学图像分割:从线性到非线性主动形状模型的探索
1. 医学图像分割的挑战与主动形状模型
在医学图像领域,准确分割器官是一项极具挑战性的任务。相邻结构常常被映射到相同的强度值范围,这使得检测它们的边界变得困难。为了应对这一挑战,利用器官形状的先验知识可以避免分割结果泄漏到相邻结构中。其中,主动形状模型(Active Shape Model,ASM)是一种广受欢迎的带有形状先验的分割算法。
1.1 线性统计形状模型(SSM)
线性SSM通过对训练形状进行主成分分析(PCA)来学习,这意味着它假设形状呈高斯分布。虽然该模型已成功应用于医学成像中各种结构的分割,但在某些情况下,这种假设并不成立。例如,由14个腰椎(L1 - L3)和9个胸椎(Th10 - Th12)椎骨组成的训练数据集,投影到前两个主成分时,每个椎骨类型(胸椎、腰椎)会形成一个聚类,而训练数据集的平均形状显示出胸椎和腰椎形状的特征,这种形状在人体中是不太可能出现的。
1.2 非线性模型的需求
为了更准确地描述此类数据集,需要非线性、多模态模型。文献中已经提出了几种用于ASM分割的非线性SSM扩展,如基于核主成分分析(Kernel Principal Component Analysis,KPCA)或高斯混合模型的方法。然而,这些方法很少应用于3D分割,因为3D分割通常面临形状高维性与训练样本数量少的巨大差距。
2. 统计形状模型与主动形状模型概述
2.1 统计形状模型(SSM)
在SSM中,每个训练形状由N个对应的地标表示,这些地标被连接成形状向量。通过Procrustes对齐计算形状的公共坐标系,线性SS