脊椎分割的统计形状模型构建与主动形状模型算法研究
1. 主动形状模型算法在脊椎分割中的应用
在脊椎分割领域,主动形状模型(ASM)算法发挥着重要作用。不同的 ASM 算法在分割效果上存在差异,下面是不同 ASM 算法的分割结果对比,表格展示了平均结果和标准差(SD):
|算法|VOE [%]|ASD [mm]|HD [mm]|
| ---- | ---- | ---- | ---- |
|Manual Initialization|60.66 (SD: 7.01)|3.83 (SD: 0.82)|16.40 (SD: 2.97)|
|Linear ASM (standard)|22.33 (SD: 6.55)|0.83 (SD: 0.33)|7.99 (SD: 3.41)|
|Linear ASM (α = 2000)|20.38 (SD: 7.62)|0.73 (SD: 0.38)|7.27 (SD: 3.64)|
|KPCA - ASM (σ3, α = 1750)|17.40 (SD: 6.66)|0.61 (SD: 0.32)|7.95 (SD: 3.52)|
|KPCA - ASM (σ6, α = 100)|17.55 (SD: 3.80)|0.60 (SD: 0.22)|6.88 (SD: 2.45)|
|KPCA - ASM (σ9, α = 50)|17.45 (SD: 4.14)|0.60 (SD: 0.22)|6.95 (SD: 2.72)|
从表格数据可以看出,KPCA - ASM 算法在各项指标上相对线性 ASM 算法有更好的表现,尤其是在 ASD(平均表面距离)指标上,能够取得更小的值,说明其