脑图像配准性能评估与小鼠全身MicroCT数据配准研究
在医学图像领域,图像配准是一项关键技术,它对于准确分析和比较不同图像数据至关重要。本文将介绍两种不同的研究,一是小鼠全身MicroCT数据的自动配准方法,二是利用结构连接信息评估脑图像配准性能的新方法。
小鼠全身MicroCT数据自动配准
在小鼠全身MicroCT数据处理中,提出了一种用于铰接物体配准的高度鲁棒且准确的方法。该方法通过用从数据集之间的点对应关系导出的距离度量来正则化基于强度的配准准则,实现了对小鼠全身MicroCT数据的有效配准。
具体来说,该方法能够在约17分钟内对高分辨率的体内全身MicroCT数据进行配准,并为骨骼和皮肤获得亚体素精度。与其他竞争方法相比,这种方法具有很高的时间效率。此外,图谱的配准还能顺带产生骨骼的分割结果。
脑图像配准性能评估
传统上,评估体积配准算法性能的研究通常通过测量参考图像和变形图像的手动轮廓标签之间的对应关系来进行。然而,这些评估往往依赖于驱动配准算法的相同信息,存在信息循环的问题。为了避免这种情况,提出了一种新的评估框架,利用从扩散加权MRI数据中导出的结构连接信息来评估脑图像配准方法的性能。
评估方法的提出背景
扩散加权成像(DWI)包含与其他结构模态互补的信息,可用于映射皮质白质的结构并确定白质的一致性。白质连接模式与大脑的功能分隔高度相关,因此在具有不同连接模式的区域评估配准性能,可能会为功能同源物的主体间对齐提供新的见解。受丘脑连接分析研究的启发,通过对一组受试者的丘脑进行分割并一致标记跨主体的解剖对应簇,可以测量主体间簇的重叠,且评估的配准算法不使用用于分割的信息。