用于可变形多模态配准的非局部形状描述符
1. 引言
医学图像配准技术在相同模态扫描的可变形配准方面取得了显著进展,出现了许多稳健且准确的方法。然而,不同模态图像的配准仍然是一个具有挑战性的任务。多模态图像的对齐有助于关联不同扫描中的相关信息,并在结构扫描中找到功能成像响应的对应解剖位置。但这些扫描之间的强度关系并非固定不变,且可能会局部变化。
互信息(MI)源自信息理论,用于衡量两个随机变量的统计依赖性。它最初被引入医学图像配准,用于多模态扫描的刚性对齐,后来在包括可变形配准在内的各种应用中得到了成功应用。其基于联合强度分布的熵越低对应着更好的对齐这一假设。然而,在实际应用中,互信息存在一些局限性。例如,它会受到非均匀强度分布(如偏置场)的影响,并且本质上是一种全局度量,局部变形可能导致解陷入局部极小值。为了克服这些困难,我们引入了一种用于多模态图像配准的新型相似性度量。
2. 非局部形状描述符
我们提出了非局部形状描述符(NLSD),它定义了与待配准的两幅图像中每个位置的图像特征形状相关的响应。该形状描述符非常适合医学图像配准的目的,因为它旨在提取具有解剖学意义的几何形状。
所提出的相似性项源自一种非常有效的去噪技术——非局部均值。为了去噪,需要在图像特征的扩展非局部区域中找到结构相似性。非局部搜索窗口中最相似的图像块的值会对去噪后的中心体素的加权平均值产生贡献。在本文中,我们将使用非局部权重来提取几何描述符,这构成了所提出的多模态相似性度量的基础。
我们在当前感兴趣体素 $x_i$ 周围的有限非局部区域 $N$ 中搜索相似的图像块。在 $N$ 内,所有图像块 $P_j$ 都与以 $x_i$ 为中心的图像块进行比较