69、基于拉普拉斯特征映射流形学习的地标定位方法

基于拉普拉斯特征映射流形学习的地标定位方法

在医学图像分析中,地标定位是一项关键任务,它对于疾病诊断、治疗规划等具有重要意义。传统的基于分类的地标检测方法存在一些局限性,而本文提出的基于拉普拉斯特征映射(Laplacian Eigenmaps)的流形学习方法为地标定位提供了一种新的解决方案。

传统地标检测方法及其局限性

传统的基于分类的地标检测方法主要思路是使用分类器来测试图像中的一个图像块是否包含地标。常见的方法有以下几种:
- Viola - Jones方法 :使用改进的AdaBoost算法结合类Haar特征来检测人脸。通过构建分类器级联,应用于在整个图像上滑动的窗口,以实现实时人脸定位。
- Lampert等人的方法 :提出了分支限界算法,减少了搜索空间,避免了在整个图像上穷举滑动窗口。
- 概率提升树方法 :用于从单个心脏MR长轴切片中自动检测地标集,基于上下文特征学习判别模型。
- 周等人的增强回归方法 :用于医学图像的解剖结构检测和定位。然而,该方法存在两个主要缺点:一是假设输出变量具有多元高斯分布,这在实际数据中很少成立;二是增强回归中的弱学习器通常太弱,训练需要组合大量的弱回归器才能收敛,导致训练时间在计算上不可行。

拉普拉斯特征映射流形学习方法

本文提出的方法旨在学习图像块的低维嵌入,假设特定地标周围的局部解剖结构在这个嵌入中能得到很好的表示。具体步骤如下:
1. 数据准备 :从ADNI数据库中选取10

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值