基于数据自适应多结构模型的脑磁共振 scout 扫描自动对齐
1. 引言
磁共振成像(MRI)具有高“平面内”分辨率和低“平面外”分辨率的特点,这对诊断成像切片的定位精度提出了很高要求。而且,不同患者扫描体积的起始方向和轴存在显著差异。因此,在所有临床脑部研究之前,使用低分辨率各向同性 3D “scout” 扫描作为提高定位精度的必要序列已成为一种趋势。
在当前的脑部 MRI 工作流程中,训练有素的技术人员会根据快速低分辨率 “scout” 扫描中的解剖信息,为后续的高分辨率扫描定位成像平面。例如,标准高分辨率脑部扫描的轴向平面应与连接前连合和后连合标志点的双连合线平行。
手动对齐存在不准确、不可重复和耗时等问题,因此自动对齐算法备受期待。临床可接受的自动对齐算法不仅要具备鲁棒性和准确性,还需要有良好的可重复性,即同一患者的后续扫描对齐应在相关解剖结构上保持一致。
现有的一些自动对齐方法存在一定局限性。比如,Andre 等人提出的将 scout 扫描与预对齐扫描进行配准的方法,在图像包含大的生长肿瘤、视野变化、严重噪声、图像伪影或缺失结构等情况时不够鲁棒;基于体素的图像配准方法在配准同一患者的扫描时可重复性较高,但在对齐不同患者的扫描时效果不佳;Sharp 等人提出的基于特征标志点和图像配准的方法依赖于同一患者的先前扫描,在实际应用中可能存在局限性;Zhang 等人提出的使用图像配准和主动形状模型的自动对齐系统,对 “可重复性” 问题的处理不够完善。
最近,“学习解剖模式集合(LEAP)” 框架在解剖结构检测方面表现出了很高的鲁棒性。基于 LEAP 的自动对齐系统在存在严重伪影或疾病的情况下也能实现极高的鲁棒性。然而,由于它将 scout