71、医学图像重建与配准技术:创新方法与实验验证

医学图像重建与配准技术:创新方法与实验验证

1. 3D 组织学图像重建方法

1.1 背景与问题提出

在现代医学图像分析中,将组织学切片重建为 3D 体积具有重要意义,可用于验证新型高分辨率体内成像技术、创建微米级图谱以及量化 3D 微观结构等。然而,组织学切片过程会引入诸如孔洞、折叠和撕裂等伪影和畸变,使得创建几何连贯的 3D 组织学体积变得困难。

目前主要有两种创建 3D 组织学体积的方法:
- 连续切片之间的配准。
- 切片与外部参考图像(如 3D 体内成像或组织学切片过程中获取的 2D 块面图像)的配准。

但这两种方法都存在局限性,单独使用连续切片配准会因孔径问题导致堆叠方向漂移,而使用外部参考图像则可能分辨率或对比度较低,且难以保证连续切片之间的结构同质性。

1.2 提出的方法

为解决上述问题,提出了一种同时将组织学切片与相应参考图像以及相邻切片进行配准的方法。该方法避免了配准过程中的任何分割步骤,以降低误差传播。具体步骤如下:
1. 能量最小化建模
- 给定组织学图像集合 (I = {I_1, \ldots, I_n}) 和相应的块面图像集合 (J = {J_1, \ldots, J_n}),寻求一组足够平滑的变换 (T = {T_1, \ldots, T_n}),使每个 (I_i) 与 (J_i) 以及相邻的 (I_{i - 1}) 和 (I_{i + 1}) 对齐。这可以通过能量最小化来建模:
[T^ = \arg \min_T E_R(I, J, T) + E_C(I, T) + E_S(T)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值