77、基于OBBTree的多仿射对数恶魔算法实现几何感知多尺度图像配准

基于OBBTree的多仿射对数恶魔算法实现几何感知多尺度图像配准

在医学图像分析领域,非线性图像配准是一项至关重要的技术。它在多个方面都有着广泛的应用,比如在大脑形态计量学研究中,通过分析图像间的自由变形来描述大脑结构的解剖变异性。然而,将用于大脑成像的配准算法直接应用于骨科图像时,可能并非最佳选择。这是因为不同类型图像的主体间变形的先验信息存在差异,使用缺乏信息的变形先验往往会导致局部极小值远离预期解。为了解决这个问题,本文提出了一种局部仿射且几何感知的配准算法。

1. 研究背景与动机

在骨科研究,尤其是下颌骨重建创伤领域,许多手术干预,如肿瘤切除、骨折重建、骨髓炎或其他骨缺损修复,都需要植入重建板。传统的重建板设计基于小样本尸体标本的形状分析或CT数据,难以捕捉下颌骨的解剖复杂性和人群中的形状变异。这导致手术效果往往不理想,可能出现板暴露、板断裂和螺钉失效等并发症。例如,有报告指出,次优的板设计会导致2.9% - 11%的植入物发生板断裂。此外,术中对板的反复弯曲会产生残余应力,影响疲劳加载时的平均应力。因此,制造尽可能贴合人体解剖结构的重建板至关重要,这就需要对下颌骨进行三维形态计量分析。

目前,许多现有的医学图像非线性配准算法要求目标变形平滑且可逆。在缺乏更精确先验信息的情况下,这是一个合理的假设,但常常会导致许多局部极小值远离最优变形。下颌骨的形状复杂,如髁突和冠突,以及人群中形状的多样性,使得配准成为一项具有挑战性的任务,因此需要改进骨科研究中的非刚性配准方法。

2. 相关算法回顾
  • 对数恶魔配准(Log - Demons Registration) :为了在解剖图像之间建立
资源下载链接为: https://pan.quark.cn/s/140386800631 通用大模型文本分类实践的基本原理是,借助大模型自身较强的理解和推理能力,在使用时需在prompt中明确分类任务目标,并详细解释每个类目概念,尤其要突出类目间的差别。 结合in-context learning思想,有效的prompt应包含分类任务介绍及细节、类目概念解释、每个类目对应的例子和待分类文本。但实际应用中,类目和样本较易导致prompt过长,影响大模型推理效果,因此可先通过向量检索缩小范围,再由大模型做最终决策。 具体方案为:离线时提前置好每个类目的概念及对应样本;在线时先对给定query进行向量召回,再将召回结果交给大模型决策。 该方法不更新任何模型参数,直接使用开源模型参数。其架构参考GPT-RE并结合相关实践改写,加入上下文学习以提高确度,还使用BGE作为向量模型,K-BERT提取文本关键词,拼接召回的相似例子作为上下文输入大模型。 代码实现上,大模型用Qwen2-7B-Instruct,Embedding采用bge-base-zh-v1.5,向量库选择milvus。分类主函数的作用是在向量库中召回相似案例,拼接prompt后输入大模型。 结果方面,使用ICL时accuracy达0.94,比bert文本分类的0.98低0.04,错误类别6个,处理时添加“家居”类别,影响不大;不使用ICL时accuracy为0.88,错误58项,可能与未修改prompt有关。 优点是无需训练即可有较好结果,例子优质、类目界限清晰时效果更佳,适合围绕通用大模型api打造工具;缺点是上限不高,仅针对一个分类任务部署大模型不划算,推理速度慢,icl的token使用,用收费api会有额外开销。 后续可优化的点是利用key-bert提取的关键词,因为核心词语有时比语意更重要。 参考资料包括
内容概要:本文详细介绍了哈希表及其相关概念和技术细节,包括哈希表的引入、哈希函数的设计、冲突处理机制、字符串哈希的基础、哈希错误率分析以及哈希的改进与应用。哈希表作为一种高效的数据结构,通过键值对存储数据,能够快速定位和检索。文中讨论了整数键值和字符串键值的哈希方法,特别是字符串哈希中的项式哈希及其优化方法,如双哈希和子串哈希的快速计算。此外,还探讨了常见的冲突处理方法——拉链法和闭散列法,并提供了C++实现示例。最后,文章列举了哈希在字符串匹、最长回文子串、最长公共子字符串等问题中的具体应用。 适合人群:计算机科学专业的学生、算法竞赛选手以及有一定编程基础并对数据结构和算法感兴趣的开发者。 使用场景及目标:①理解哈希表的工作原理及其在各种编程任务中的应用;②掌握哈希函数的设计原则,包括如何选择合适的模数和基数;③学会处理哈希冲突的方法,如拉链法和闭散列法;④了解并能运用字符串哈希解决实际问题,如字符串匹、回文检测等。 阅读建议:由于哈希涉及较数学知识和编程技巧,建议读者先熟悉基本的数据结构和算法理论,再结合代码实例进行深入理解。同时,在实践中不断尝试不同的哈希策略,对比性能差异,从而更好地掌握哈希技术。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值