基于OBBTree的多仿射对数恶魔算法实现几何感知多尺度图像配准
在医学图像分析领域,非线性图像配准是一项至关重要的技术。它在多个方面都有着广泛的应用,比如在大脑形态计量学研究中,通过分析图像间的自由变形来描述大脑结构的解剖变异性。然而,将用于大脑成像的配准算法直接应用于骨科图像时,可能并非最佳选择。这是因为不同类型图像的主体间变形的先验信息存在差异,使用缺乏信息的变形先验往往会导致局部极小值远离预期解。为了解决这个问题,本文提出了一种局部仿射且几何感知的配准算法。
1. 研究背景与动机
在骨科研究,尤其是下颌骨重建创伤领域,许多手术干预,如肿瘤切除、骨折重建、骨髓炎或其他骨缺损修复,都需要植入重建板。传统的重建板设计基于小样本尸体标本的形状分析或CT数据,难以捕捉下颌骨的解剖复杂性和人群中的形状变异。这导致手术效果往往不理想,可能出现板暴露、板断裂和螺钉失效等并发症。例如,有报告指出,次优的板设计会导致2.9% - 11%的植入物发生板断裂。此外,术中对板的反复弯曲会产生残余应力,影响疲劳加载时的平均应力。因此,制造尽可能贴合人体解剖结构的重建板至关重要,这就需要对下颌骨进行三维形态计量分析。
目前,许多现有的医学图像非线性配准算法要求目标变形平滑且可逆。在缺乏更精确先验信息的情况下,这是一个合理的假设,但常常会导致许多局部极小值远离最优变形。下颌骨的形状复杂,如髁突和冠突,以及人群中形状的多样性,使得配准成为一项具有挑战性的任务,因此需要改进骨科研究中的非刚性配准方法。
2. 相关算法回顾
- 对数恶魔配准(Log - Demons Registration) :为了在解剖图像之间建立