78、几何变形:图像配准的新方法

几何变形:图像配准的新方法

1. 引言与背景

图像配准通常基于源图像和目标图像之间的结构相似性,常用的相似性度量方法有直接比较图像强度,或使用互信息、互相关等间接强度度量。然而,对于包含病理信息的图像,结构和强度相似性的假设可能不成立。

在创伤性脑损伤(TBI)病例中,临床挑战之一是区分大脑的永久性和暂时性变化,以便制定有效的治疗和康复计划。通常会在患者初次就诊时以及四到八个月后进行扫描,两次扫描间,病理的几何形状、大脑的变形以及病理对大脑的浸润都会发生显著变化。确定浸润消退的区域对于预测长期预后尤为有用。同样,在肿瘤病例中,治疗后评估需要确定肿瘤几何形状、肿瘤浸润、疤痕形成以及整体大脑形态的变化。在中风病例中,临床需求是从急性扫描中预测慢性血液灌注变化。这些情况的共同特点是存在全局组织变形、病理几何形状的局部变化以及组织和病理组成的局部变化,我们将这些变化称为“几何变形”。

传统的低维图像变换模型的配准方法可能能够容忍几何变形的变化,但直接应用经典的可变形配准方法可能会产生不切实际的变形估计。为了解决几何变形问题,已经提出了具有弱和强外观变化模型的可变形配准方法。例如,一些方法具有强大的脑肿瘤质量效应和浸润模型,但这些方法通常是特定于应用的,并且依赖于肿瘤模型与观察到的肿瘤的良好匹配。另一方面,图像变形方法使用弱模型来精确地将源图像平滑地转换为目标图像,但这些方法没有明确建模病理的变形或组成,难以量化肿瘤浸润或中风后的组织恢复等效果。

2. 几何变形模型

以肿瘤生长为例,图像外观的变化可能由组织变形、肿瘤生长挤压健康组织以及肿瘤浸润健康组织等多种因素引起。组织变形和肿瘤生长引起的位移可以通过标准配准方法捕捉,但浸润并不意味着空间变化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值