80、图像时间序列的测地回归

图像时间序列的测地回归

1. 引言

图像时间序列分析在研究大脑发育、衰老过程或肿瘤生长等方面具有重要意义。当全局测量不足以进行分析时,建立图像对应关系并定位变化至关重要。过去几十年,图像对之间的配准研究广泛,但对图像群体的研究相对较新。目前,图像时间序列的配准方法有多种,如串联图像对之间的配准、求解联合估计问题得到分段测地路径、基于核的局部平均,以及在联合估计中增加额外的时间不规则性惩罚。

本文提出一种生成模型,将最小二乘线性回归扩展到图像空间,采用二阶动态公式进行图像配准。该方法具有以下优点:
- 是生成式的,通过初始图像和动量描述完整的时间轨迹。
- 允许基于初始动量集对时间序列进行紧凑的统计分析。
- 为图像时间序列设计近似算法提供了可能性。
- 能够处理时间上的非均匀采样。

2. 最小二乘直线拟合的动态公式

从最优控制的角度考虑最小二乘线性回归。设 ${y_i}$ 是在时间点 ${t_i}$(不一定不同)的一组 $M$ 个测量值,动态系统为 $\dot{x} 1 = x_2$;$\dot{x}_2 = 0$,其中状态分别表示 $y$ 截距和斜率。目标是找到初始条件 $x_1(t_0)$,$x_2(t_0)$,使能量函数 $E$ 最小化:
[
E = \int
{t_0}^{t_{M - 1}} \lambda_1(\dot{x} 1 - x_2) + \lambda_2(\dot{x}_2) dt + \sum {i = 0}^{M - 1} (x_1(t_i) - y_i)^2
]
其中拉格朗日乘子 $\lambda_1$

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值