智能学习与分类及软件维护创新研究
智能学习过程建模
在学习过程研究中,构建个人学习轨迹需要持续应用优化标准并定期改变主体特征。由于行为的不确定性,获取目标专业能力的过程具有非线性特点。我们将学习过程视为一个从初始状态 (Z_{begin}) 到最终状态 (Z_{end}) 的 (x) 步过程,在这个模型中,达到 (Z_{end}=1) 意味着获得专业 (C_j)。
当前系统状态记为 (Z_x),可接受的解决方案集合是一系列未探索但必须学习的训练模块 (P_x)。每个后续的中间系统状态基于前一个状态,遵循以下公式:
(Z_{x + 1}= Z_x\cup P_x) (9)
显然,每一步都会有多个目标模块的选择。系统的当前状态由上一步获得的解决方案集合决定,且最大程度符合目标能力要求集合,即:
(Z_{x + 1}\to max) (10)
在这种情况下,最优解满足以下条件:
(Z_{x + 1}(Z_x, P_x) = \max_{P_x}(Z_x + f(Z_x, P_x))) (11)
其中 (f(Z_x, P_x) = \Delta Z_{x + 1})。
基于每一步性能指标累积的目标函数是可加的。因此,构成学习过程的最优训练模块序列为:
(Z_{optimal}= \sum_{x = 1}^{S}Z_x) (12)
集合 (P_x) 包含满足所有约束条件的训练模块,这些模块要么没有前置模块,要么其前置模块已被学习。它们是系统当前状态 (Z_x) 的一组可行解决方案。在学习过程的每一步,都可以根据对前一个模块的评估来选择后续模块的训练模块。