集群边缘架构中的性能管理
1. 实验场景与结果分析
在实验中,考虑了100个输入请求。在特定场景下,用户请求数量固定,而边缘层节点数量分别设为5、10、15、20、30和50,使用公式(11)来计算适应度函数。
随着边缘层节点数量的增加,适应度函数值减小。这是因为有更多节点可用于执行请求,节点数量越多,请求越有可能由低延迟的节点处理。也就是说,边缘层节点数量的增加为控制器分配更多请求提供了更多选择,从而增加了找到低延迟合适节点的机会。随着条件变化,请求的执行方式也会改变,进而减少执行时间。
对于粒子优化算法,边缘层节点数量越多,目标函数值越低。而且,粒子群优化算法(PSO)的目标函数值下降速度比BAT算法快很多,这在相关实验结果图中很明显。为了更好地比较算法,每个算法都运行了多次。
边缘层节点数量 | 对适应度函数和执行的影响 |
---|---|
增加 | 适应度函数值减小,执行时间可能减少 |
下面是一个简单的mermaid流程图,展示边缘层节点数量增加带来的影响:
graph LR
A[边缘层节点数量增加] --> B[更多节点可执行请求]
B --> C[请求更可能由低延迟节点处理]
C --> D[适应度函数值减小]
C --> E[执行时间减少]
</