29、集群边缘架构中的性能管理

集群边缘架构中的性能管理

1. 实验场景与结果分析

在实验中,考虑了100个输入请求。在特定场景下,用户请求数量固定,而边缘层节点数量分别设为5、10、15、20、30和50,使用公式(11)来计算适应度函数。

随着边缘层节点数量的增加,适应度函数值减小。这是因为有更多节点可用于执行请求,节点数量越多,请求越有可能由低延迟的节点处理。也就是说,边缘层节点数量的增加为控制器分配更多请求提供了更多选择,从而增加了找到低延迟合适节点的机会。随着条件变化,请求的执行方式也会改变,进而减少执行时间。

对于粒子优化算法,边缘层节点数量越多,目标函数值越低。而且,粒子群优化算法(PSO)的目标函数值下降速度比BAT算法快很多,这在相关实验结果图中很明显。为了更好地比较算法,每个算法都运行了多次。

边缘层节点数量 对适应度函数和执行的影响
增加 适应度函数值减小,执行时间可能减少

下面是一个简单的mermaid流程图,展示边缘层节点数量增加带来的影响:

graph LR
    A[边缘层节点数量增加] --> B[更多节点可执行请求]
    B --> C[请求更可能由低延迟节点处理]
    C --> D[适应度函数值减小]
    C --> E[执行时间减少]
</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值