独家 | 手把手教你如何使用Flask轻松部署机器学习模型(附代码&链接)

本文提供了一种使用Flask轻松部署机器学习模型的方法,介绍了Flask的优势,并给出了相关代码示例。内容涉及模型API的创建、CSS样式设置,适合想要将模型投入生产环境的读者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

640?wx_fmt=png
作者:Abhinav Sagar
翻译:申利彬
校对:吴金笛
本文约 2700字,建议阅读 7分钟

本文可以让你把训练好的机器学习模型使用Flask API 投入生产环境。


本文旨在让您把训练好的机器学习模型通过Flask API 投入到生产环境 。

当数据科学或者机器学习工程师使用Scikit-learn、Tensorflow、Keras 、PyTorch等框架部署机器学习模型时,最终的目的都是使其投入生产。通常,我们在做机器学习项目的过程中,将注意力集中在数据分析,特征工程,调整参数等方面。但是,我们往往会忘记主要目标,即从模型预测结果中获得实际的价值。

部署机器学习模型或者将模型投入生产,意味着将模型提供给最终的用户或系统使用。

然而机器学习模型部署具有一定的复杂性,本文可以让你把训练好的机器学习模型使用Flask API 投入生产环境。

我将使用线性回归,通过利率和前两个月的销售额来预测第三个月的销售额。

线性回归是什么?

线性回归模型的目标是找出一个或多个特征(自变量)和一个连续目标变量(因变量)之间的关系。如果只有一个特征,则称为单变量线性回归;如果有多个特征,则称为多元线性回归。

线性回归的假设

线性回归模型可以用下面的等式表示:

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

线性回归图解

为什么使用Flask?

  • 容易上手使用

  • 内置开发工具和调试工具

  • 集成单元测试功能

  • 平稳的请求调度

  • 详尽的文档


项目结构

这个项目分为四个部分:

1. model.py -- 包含机器学习模型的代码,用于根据前两个月的销售额预测第三个月的销售额。
2. app.py – 包含用于从图形用户界面(GUI)或者API调用获得详细销售数据的Flask API,Flask API根据我们的模型计算预测值并返回。
3. request.py -- 使用requests模块调用app.py中定义的API并显示返回值。
4. HTML/CSS – 包含HTML模板和CSS风格代码,允许用户输入销售细节并显示第三个月的预测值。

640?wx_fmt=png

部署机器学习模型的Pipeline

环境和工具

1. Scikit-learn
2. Pandas
3. Numpy
4. Flask

代码在哪里呢?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值