NLP情感分析技术公开课笔记

一、文本分类

任务目标:在给定的分类体系中,将文本分到指定的某个或者几个类别当中。

分类体系:一般由人工构造

产品应用:如意图识别,根据query,确认query所属的类别,如娱乐、新闻、体育等。

技术发展

(1)基于规则的方法:依赖专家设计规则,准确率不高,泛化能力弱

(2)传统机器学习的方法(特征工程+算法):SVM/ Naive Bayes/LR

(3)深度学习的方法(DNN、预训练):fast text/TextCNN/LSTMBERT/ERNIE

评价指标

(1)Accuracy,准确率 =预测正确的样本数/总样本数

      关注整体效果,适合均衡的数据

(2)Recall,召回率=预测正确的样本数/标注的样本数

       关注模型预测的全不全,漏了哪些东西

(3)Precision,精确率=预测正确的样本数/预测出来的样本数

        关注模型预测的准不准

(4)F1.综合指标=2*P*R/(P+R)

        综合指标,同时考虑P和R

二、情感分析的背景

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值