一、文本分类
任务目标:在给定的分类体系中,将文本分到指定的某个或者几个类别当中。
分类体系:一般由人工构造
产品应用:如意图识别,根据query,确认query所属的类别,如娱乐、新闻、体育等。
技术发展:
(1)基于规则的方法:依赖专家设计规则,准确率不高,泛化能力弱
(2)传统机器学习的方法(特征工程+算法):SVM/ Naive Bayes/LR
(3)深度学习的方法(DNN、预训练):fast text/TextCNN/LSTMBERT/ERNIE
评价指标:
(1)Accuracy,准确率 =预测正确的样本数/总样本数
关注整体效果,适合均衡的数据
(2)Recall,召回率=预测正确的样本数/标注的样本数
关注模型预测的全不全,漏了哪些东西
(3)Precision,精确率=预测正确的样本数/预测出来的样本数
关注模型预测的准不准
(4)F1.综合指标=2*P*R/(P+R)
综合指标,同时考虑P和R
二、情感分析的背景