TOP 100值得读的图神经网络----架构

Top100值得一读的图神经网络 (qq.com)https://mp.weixin.qq.com/s?__biz=MzIyNDY5NjEzNQ==&mid=2247491631&idx=1&sn=dfa36e829a84494c99bb2d4f755717d6&chksm=e809a207df7e2b1117578afc86569fa29ee62eb883fd35428888c0cc0be750faa5ef091f9092&mpshare=1&scene=23&srcid=1026NUThrKm2Vioj874F3gqS&sharer_sharetime=1635227630762&sharer_shareid=80f244b289da8c80b67c915b10efd0a8#rd清华大学的Top 100 GNN papers,其中分了十个方向,每个方向10篇

本文是对架构方向10篇的阅读笔记:

  1. Semi-Supervised Classification with Graph Convolutional Networks. Thomas N. Kipf, Max Welling. NeuIPS'17.
  2. Graph Attention Networks. Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, Yoshua Bengio. ICLR'18.
  3. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. NeuIPS'16.
  4. Predict then Propagate: Graph Neural Networks meet Personalized PageRank. Johannes Klicpera, Aleksandar Bojchevski, Stephan Günnemann. ICLR'19.
  5. Gated Graph Sequence Neural Networks. Li, Yujia N and Tarlow, Daniel and Brockschmidt, Marc and Zemel, Richard. ICLR'16.
  6. Inductive Representation Learning on Large Graphs. William L. Hamilton, Rex Ying, Jure Leskovec. NeuIPS'17.
  7. Deep Graph Infomax. Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, R Devon Hjelm. ICLR'19.
  8. Representation Learning on Graphs with Jumping Knowledge Networks. Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, Stefanie Jegelka. ICML'18.
  9. DeepGCNs: Can GCNs Go as Deep as CNNs?. Guohao Li, Matthias Müller, Ali Thabet, Bernard Ghanem. ICCV'19.
  10. DropEdge: Towards Deep Graph Convolutional Networks on Node Classification. Yu Rong, Wenbing Huang, Tingyang Xu, Junzhou Huang. ICLR'20

目录

一、GCN 基于图卷积网络的半监督分类  SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS

二、GAT 图注意力网络 Graph Attention Networks

三、具有快速局部谱滤波的图上的卷积神经网络 Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

四、预测后传播:图神经网络满足个性化PageRank PREDICT THEN PROPAGATE: GRAPH NEURAL NETWORKS MEET PERSONALIZED PAGERANK

五、门控图序列神经网络 GATED GRAPH SEQUENCE NEURAL NETWORKS

六、GraphSAGE大型图的归纳表示学习 Inductive Representation Learning on Large Graphs

七、DGI DEEP GRAPH INFOMAX          

八、JK Representation Learning on Graphs with Jumping Knowledge Networks         

九、DeepGCNs: Can GCNs Go as Deep as CNNs?           

十、DROPEDGE: TOWARDS DEEP GRAPH CONVOLUTIONAL NETWORKS ON NODE CLASSIFICATION

             


一、GCN 基于图卷积网络的半监督分类  SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS

提出了一种全新的基于图结构的半监督学习方法,使用谱图理卷积的局域近似一阶进行卷积,模型在图的边数中线性缩放,并学习同时编码局部图结构和节点特征的隐含层表示

1 INTRODUCTION

  • 图半监督学习:对图(如引文网络)中的节点(如文档)进行分类的问题,其中标签只对一小部分节点可用
  • 传统的拉普拉斯正则项:
    • 依赖于图中连接的节点可能共享相同标签的假设。然而,这种假设可能会限制建模能力,因为图的边不一定需要编码节点相似性,但可以包含附加信息
  • 本文改进:
    • 直接使用神经网络模型𝑓(𝑋,𝐴)对图结构进行编码
    • 对所有带标签的节点在有监督的目标𝐿0上进行训练,从而避免了损失函数中显式的基于图的正则化
    • 图的邻接矩阵上的条件𝑓(·)将允许模型分发来自监督损失𝐿0的梯度信息,并将使其能够学习带和不带标签的节点的表示

2 FAST APPROXIMATE CONVOLUTIONS ONGRAPHS 关于图的快速近似卷积

  • 分层传播规则的多层图卷积网络(GCN)

  • 这种传播规则的形式可以通过图上的局域谱滤波的一阶近似来实现

谱图卷积

  • 图上的谱卷积,计算量大,最后与U相乘需要𝑂(𝑛2)
  • 近似:可以用切比雪夫多项式的截断展开式很好地逼近,复杂度降为𝑂(𝐸)

分层线性模型

  • 让K近似为1,变为分层模型,然后可通过层的堆叠实现丰富的卷积滤波函数
  • 进一步让𝜆𝑚𝑎𝑥≈2, 神经网络参数将在训练期间适应这种规模的变化
  • 进一步减少参数:

得到最后的公式,Z为输出,Θ为可训练参数

3 SEMI-SUPERVISED NODE CLASSIFICATION

  • 首先计算出来
  • 然后进行两层的分层线性模型

  • 𝑤0为input-hidden, 𝑊1为hidden-output

二、GAT 图注意力网络 Graph Attention Networks

两种解释:

  1. 将注意力机制引入到图中
  2. 对特征X的再参数化(使用矩阵W对h进行的)

注意力机制(打分函数):

更新节点特征

  • 多头注意力的两种方式(拼接与平均)

三、具有快速局部谱滤波的图上的卷积神经网络 Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

1 Introduction

  • 将CNN推广到图的主要瓶颈:定义便于评估和学习的局部化图过滤器,也是本文的贡献
    1. 谱图理论的公式
    2. 严格的局部的滤波器:光谱滤波器可以被证明严格地局限在半径K的球体中,即从中心顶点开始的K跳
    3. 低计算复杂度
    4. 高效的池化

2 Proposed Technique

2.1 Learning Fast Localized Spectral Filters

  • 将CNN迁移到图中的三个步骤:
    1. 图上局部卷积的设计
    2. 将相似的顶点组合在一起的图粗化过程
    3. 以空间分辨率换取更高过滤器分辨率的图形池化操作
  • 两种方法的问题:都可以通过对图滤波器参数的特殊选择来克服
    • 空间卷积:通过有限大小的核提供滤波器定位
      • 尽管空间域中的图形卷积是可以想象的,但它面临着匹配局部邻域的挑战
      • 因此,从空间的角度看,图上的平移没有唯一的数学定义
    • 谱方法:通过Kronecker增量,利用卷积定理,在图上提供了定义良好的定位算子[31]
      • 然而,定义在谱域中的滤波器不是自然局部化的,计算代价高𝑂(𝑛2)
  • 谱图公式
  • 使用多项式参数化局部滤波器
  • 滤波器的参数学习

2.2 Graph Coarsening

  • 图池化需要有意义的领域,因此需要聚类操作,而图聚类是NP问题,因此需要近似方法
  • 多级聚类算法,其中每个级别生成一个更粗糙的图,该图对应于以不同分辨率看到的数据域。在每个级别将图表大小减少2倍的群集技术提供了对粗化和池化大小的精确控制
  • Graclus的贪婪规则,一种非常快速的粗化方案,它将节点数从一个级别除以大约两个(可能存在一些单独的、不匹配的节点)到下一个较粗糙的级别。
    • 在每个粗化级别选取未标记的顶点i,并将其与其未标记的邻居j之一进行匹配,从而最大化局部归一化切割𝑊𝑖𝑗(1/𝑑𝑖+1/𝑑𝑗)。
    • 标记两个匹配的顶点,并将粗化权重设置为其权重之和
    • 重复匹配,直到遍历完所有节点

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值