本文是对架构方向10篇的阅读笔记:
- Semi-Supervised Classification with Graph Convolutional Networks. Thomas N. Kipf, Max Welling. NeuIPS'17.
- Graph Attention Networks. Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, Yoshua Bengio. ICLR'18.
- Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. NeuIPS'16.
- Predict then Propagate: Graph Neural Networks meet Personalized PageRank. Johannes Klicpera, Aleksandar Bojchevski, Stephan Günnemann. ICLR'19.
- Gated Graph Sequence Neural Networks. Li, Yujia N and Tarlow, Daniel and Brockschmidt, Marc and Zemel, Richard. ICLR'16.
- Inductive Representation Learning on Large Graphs. William L. Hamilton, Rex Ying, Jure Leskovec. NeuIPS'17.
- Deep Graph Infomax. Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, R Devon Hjelm. ICLR'19.
- Representation Learning on Graphs with Jumping Knowledge Networks. Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, Stefanie Jegelka. ICML'18.
- DeepGCNs: Can GCNs Go as Deep as CNNs?. Guohao Li, Matthias Müller, Ali Thabet, Bernard Ghanem. ICCV'19.
- DropEdge: Towards Deep Graph Convolutional Networks on Node Classification. Yu Rong, Wenbing Huang, Tingyang Xu, Junzhou Huang. ICLR'20
目录
一、GCN 基于图卷积网络的半监督分类 SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS
二、GAT 图注意力网络 Graph Attention Networks
三、具有快速局部谱滤波的图上的卷积神经网络 Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
四、预测后传播:图神经网络满足个性化PageRank PREDICT THEN PROPAGATE: GRAPH NEURAL NETWORKS MEET PERSONALIZED PAGERANK
五、门控图序列神经网络 GATED GRAPH SEQUENCE NEURAL NETWORKS
六、GraphSAGE大型图的归纳表示学习 Inductive Representation Learning on Large Graphs
八、JK Representation Learning on Graphs with Jumping Knowledge Networks
九、DeepGCNs: Can GCNs Go as Deep as CNNs?
十、DROPEDGE: TOWARDS DEEP GRAPH CONVOLUTIONAL NETWORKS ON NODE CLASSIFICATION
一、GCN 基于图卷积网络的半监督分类 SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS
提出了一种全新的基于图结构的半监督学习方法,使用谱图理卷积的局域近似一阶进行卷积,模型在图的边数中线性缩放,并学习同时编码局部图结构和节点特征的隐含层表示
1 INTRODUCTION
- 图半监督学习:对图(如引文网络)中的节点(如文档)进行分类的问题,其中标签只对一小部分节点可用
- 传统的拉普拉斯正则项:
- 依赖于图中连接的节点可能共享相同标签的假设。然而,这种假设可能会限制建模能力,因为图的边不一定需要编码节点相似性,但可以包含附加信息
- 本文改进:
- 直接使用神经网络模型𝑓(𝑋,𝐴)对图结构进行编码
- 对所有带标签的节点在有监督的目标𝐿0上进行训练,从而避免了损失函数中显式的基于图的正则化。
- 图的邻接矩阵上的条件𝑓(·)将允许模型分发来自监督损失𝐿0的梯度信息,并将使其能够学习带和不带标签的节点的表示
2 FAST APPROXIMATE CONVOLUTIONS ONGRAPHS 关于图的快速近似卷积
- 分层传播规则的多层图卷积网络(GCN)
- 这种传播规则的形式可以通过图上的局域谱滤波的一阶近似来实现
谱图卷积
- 图上的谱卷积,计算量大,最后与U相乘需要𝑂(𝑛2)
- 近似:可以用切比雪夫多项式的截断展开式很好地逼近,复杂度降为𝑂(𝐸)
分层线性模型
- 让K近似为1,变为分层模型,然后可通过层的堆叠实现丰富的卷积滤波函数
- 进一步让𝜆𝑚𝑎𝑥≈2, 神经网络参数将在训练期间适应这种规模的变化
- 进一步减少参数:
得到最后的公式,Z为输出,Θ为可训练参数
3 SEMI-SUPERVISED NODE CLASSIFICATION
- 首先计算出来
- 然后进行两层的分层线性模型
- 𝑤0为input-hidden, 𝑊1为hidden-output
二、GAT 图注意力网络 Graph Attention Networks
两种解释:
- 将注意力机制引入到图中
- 对特征X的再参数化(使用矩阵W对h进行的)
注意力机制(打分函数):
更新节点特征
- 多头注意力的两种方式(拼接与平均)
三、具有快速局部谱滤波的图上的卷积神经网络 Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
1 Introduction
- 将CNN推广到图的主要瓶颈:定义便于评估和学习的局部化图过滤器,也是本文的贡献
- 谱图理论的公式
- 严格的局部的滤波器:光谱滤波器可以被证明严格地局限在半径K的球体中,即从中心顶点开始的K跳
- 低计算复杂度
- 高效的池化
2 Proposed Technique
2.1 Learning Fast Localized Spectral Filters
- 将CNN迁移到图中的三个步骤:
- 图上局部卷积的设计
- 将相似的顶点组合在一起的图粗化过程
- 以空间分辨率换取更高过滤器分辨率的图形池化操作
- 两种方法的问题:都可以通过对图滤波器参数的特殊选择来克服
- 空间卷积:通过有限大小的核提供滤波器定位
- 尽管空间域中的图形卷积是可以想象的,但它面临着匹配局部邻域的挑战
- 因此,从空间的角度看,图上的平移没有唯一的数学定义
- 谱方法:通过Kronecker增量,利用卷积定理,在图上提供了定义良好的定位算子[31]
- 然而,定义在谱域中的滤波器不是自然局部化的,计算代价高𝑂(𝑛2)
- 然而,定义在谱域中的滤波器不是自然局部化的,计算代价高𝑂(𝑛2)
- 空间卷积:通过有限大小的核提供滤波器定位
- 谱图公式
- 使用多项式参数化局部滤波器
- 滤波器的参数学习
2.2 Graph Coarsening
- 图池化需要有意义的领域,因此需要聚类操作,而图聚类是NP问题,因此需要近似方法
- 多级聚类算法,其中每个级别生成一个更粗糙的图,该图对应于以不同分辨率看到的数据域。在每个级别将图表大小减少2倍的群集技术提供了对粗化和池化大小的精确控制
- Graclus的贪婪规则,一种非常快速的粗化方案,它将节点数从一个级别除以大约两个(可能存在一些单独的、不匹配的节点)到下一个较粗糙的级别。
- 在每个粗化级别选取未标记的顶点i,并将其与其未标记的邻居j之一进行匹配,从而最大化局部归一化切割𝑊𝑖𝑗(1/𝑑𝑖+1/𝑑𝑗)。
- 标记两个匹配的顶点,并将粗化权重设置为其权重之和
- 重复匹配,直到遍历完所有节点