8.15.8 ACM-ICPC 线性代数: 线性基
引言
在线性代数中,线性基(或称基底)是描述向量空间结构的重要工具。理解线性基的概念和性质对于解决许多数学和编程问题至关重要。本文将详细介绍线性基的定义、性质以及其在实际问题中的应用。
线性基的定义
线性基是线性空间中的一个向量组,它具有生成整个空间的能力,同时向量组中的向量彼此线性无关。形式上,如果 VVV 是一个线性空间,向量组 {v1,v2,…,vn}\{v_1, v_2, \ldots, v_n\}{v1,v2,…,vn} 满足以下两个条件:
-
生成整个空间:任何 VVV 中的向量都可以表示为 {v1,v2,…,vn}\{v_1, v_2, \ldots, v_n\}{v1,v2,…,vn} 的线性组合,即对于任意 v∈Vv \in Vv∈V,存在一组标量 a1,a2,…,ana_1, a_2, \ldots, a_na1,a2,…,an 使得 v=a1v1+a2v2+⋯+anvnv = a_1 v_1 + a_2 v_2 + \cdots + a_n v_nv=a1v1+a2v2+⋯+anvn
-
线性无关:向量组 {v1,v2,…,vn}\{v_1, v_2, \ldots, v_n\}{v1,v2,…,vn} 中的向量彼此线性无关,即如果 a1v1+a2v2+⋯+anvn=0a_1 v_1 + a_2 v_2 + \cdots + a_n v_n = 0a1v1+a2v2+⋯+anvn=0 则 a1=a2=⋯=an=0a_1 = a_2 = \cdots = a_n = 0a1=a2=⋯=an=0。
满足上述条件的向量组 {v1,v2,…,vn}\{v_1, v_2, \ldots, v_n\}{v1,v2,…,vn} 称为 VVV 的一个基,向量组中向量的数量 nnn 称为 VVV 的维数。
基的存在性与唯一性
存在性
对于任意有限维线性空间 VVV,都存在一个基。可以通过高斯消元法等算法从任意向量组中找到一个极大线性无关组,进而得到一个基。
唯一性
虽然一个线性空间可以有多个不同的基,但所有基的向量数量(即维数)都是相同的。因此,维数是线性空间的一个不变量。
例子
- 欧几里得空间 Rn\mathbb{R}^nRn
标准基 {e1,e2,…,en}\{e_1, e_2, \ldots, e_n\}{e1,e2,…,en},其中 ei=(0,0,…,1,…,0)e_i = (0, 0, \ldots, 1, \ldots, 0)ei=(0,0,…,1,…,0) 即第 iii 个分量为 1,其余分量为 0。
- 多项式空间 P[x]\mathbb{P}[x]P[x]
对于多项式空间 Pn[x]\mathbb{P}_n[x]Pn[x],基为 {1,x,x2,…,xn}\{1, x, x^2, \ldots, x^n\}{1,x,x2,…,xn}
- 矩阵空间 Pm×n\mathbb{P}^{m \times n}Pm×n
基为标准矩阵,其中每个矩阵只有一个元素为 1,其余元素为 0。
线性基的性质
- 唯一表示:每个向量都可以唯一地表示为基向量的线性组合。
- 维数不变性:所有基的向量数量相同。
- 扩展性:任意线性无关向量组可以扩展成一个基。