前言:
这一部分导出我还没用到
3.4 使用Ultralytics YOLO进行模型导出
Ultralytics YOLO生态系统及其集成
引言
训练模型的最终目标是将其部署于现实世界中的应用场景中。Ultralytics YOLO11 的导出模式为将训练好的模型导出为不同格式提供了多样化的选择,从而使其能够部署在各种平台和设备上。本文将全面介绍模型导出的细节,展示如何实现最大的兼容性和性能。
观看视频:如何导出自定义训练的Ultralytics YOLO模型并在网络摄像头上进行实时推断。
为什么选择YOLO11的导出模式?
-
多样性:可导出为包括ONNX、TensorRT、CoreML在内的多种格式。
-
高性能:使用TensorRT可获得高达5倍的GPU加速,使用ONNX或OpenVINO可获得高达3倍的CPU加速。
-
兼容性:使您的模型可以在众多硬件和软件环境中通用部署。
-
易用性:通过简单的命令行界面(CLI)和Python API快速、便捷地导出模型。
导出模式的主要特性
以下是一些主要的功能特性:
-
一键导出:通过简单命令导出为不同格式。
-
批量导出:支持批量推断的模型导出。
-
优化推断:导出的模型经过优化,以更快的推断时间运行。
-
教程视频:提供详细的指南和教程,确保流畅的导出体验。
提示:
-
导出为ONNX或OpenVINO格式,可获得高达3倍的CPU加速。
-
导出为TensorRT格式,可获得高达5倍的GPU加速。
使用示例
将YOLO11n模型导出为ONNX或TensorRT等不同格式。请参阅下方的参数部分,了解导出所需的完整参数列表。
示例代码
Python代码
from ultralytics import YOLO
# 加载模型
model = YOLO("yolo11n.pt") # 加载官