3.4 使用Ultralytics YOLO进行模型导出


前言:

这一部分导出我还没用到 


 

3.4 使用Ultralytics YOLO进行模型导出

Ultralytics YOLO生态系统及其集成

引言

训练模型的最终目标是将其部署于现实世界中的应用场景中。Ultralytics YOLO11 的导出模式为将训练好的模型导出为不同格式提供了多样化的选择,从而使其能够部署在各种平台和设备上。本文将全面介绍模型导出的细节,展示如何实现最大的兼容性和性能。

观看视频:如何导出自定义训练的Ultralytics YOLO模型并在网络摄像头上进行实时推断。

为什么选择YOLO11的导出模式?

  • 多样性:可导出为包括ONNX、TensorRT、CoreML在内的多种格式。

  • 高性能:使用TensorRT可获得高达5倍的GPU加速,使用ONNX或OpenVINO可获得高达3倍的CPU加速。

  • 兼容性:使您的模型可以在众多硬件和软件环境中通用部署。

  • 易用性:通过简单的命令行界面(CLI)和Python API快速、便捷地导出模型。

导出模式的主要特性

以下是一些主要的功能特性:

  • 一键导出:通过简单命令导出为不同格式。

  • 批量导出:支持批量推断的模型导出。

  • 优化推断:导出的模型经过优化,以更快的推断时间运行。

  • 教程视频:提供详细的指南和教程,确保流畅的导出体验。

提示:

  • 导出为ONNX或OpenVINO格式,可获得高达3倍的CPU加速。

  • 导出为TensorRT格式,可获得高达5倍的GPU加速。

使用示例

将YOLO11n模型导出为ONNX或TensorRT等不同格式。请参阅下方的参数部分,了解导出所需的完整参数列表。

示例代码

Python代码

from ultralytics import YOLO

# 加载模型
model = YOLO("yolo11n.pt")  # 加载官
<think>嗯,用户想知道如何将YOLOv8模型通过TensorRT部署到Jetson Nano上。首先,我需要回忆一下相关的步骤和注意事项。根据之前的引用资料,用户可能已经训练好了YOLOv8模型,现在需要部署到Jetson Nano,但因为Nano的算力有限,所以需要TensorRT加速。 首先,应该检查环境配置。引用中提到Jetson Nano需要特定的环境,比如TensorRT 7.2.1.6,CUDA 10.2,PyTorch 1.6等。用户需要确保这些组件已经正确安装,并且版本兼容。因为不同版本的TensorRT和YOLO可能会有兼容性问题,这点需要注意。 接下来是模型转换。YOLOv8的官方支持可能没有直接导出到TensorRT的选项,所以可能需要先将模型转换为ONNX格式,然后再转为TensorRT的engine文件。根据引用[4],用户可能在转换ONNX时遇到问题,比如安装onnxoptimizer和onnxsim库失败,这时候可以在个人电脑上完成转换,再传输到Nano上。不过要注意文件时间不一致的问题,可以通过命令`sudo find ./* -exec touch {} +`来解决。 然后是生成engine文件。使用TensorRT的trtexec工具或者编写自定义脚本进行转换。需要根据模型结构调整参数,比如输入尺寸和精度。这里可能需要参考TensorRT的文档或者社区资源,确保参数设置正确,避免生成不可用的engine文件。 部署阶段需要编写推理代码,处理图像预处理、模型推理和后处理。考虑到Nano的内存限制,可能需要优化内存使用,比如使用FP16精度,或者调整batch size。同时,确保OpenCV版本兼容,因为引用[3]提到需要3.4.9以上版本。 性能优化方面,可以启用TensorRT的优化策略,如层融合和内存优化。另外,监控资源使用情况,避免CPU和内存成为瓶颈。用户可能还关心如何测试和验证模型的准确性,确保转换后的模型没有精度损失。 用户可能遇到的问题包括环境配置错误、模型转换失败、推理速度不理想等。需要提供一些常见问题的解决方法,比如检查版本兼容性,使用正确的转换脚本,调整模型参数等。 最后,生成相关问题时要考虑用户可能的后续疑问,比如如何验证模型转换的正确性,如何进一步优化推理速度,如何处理多线程推理等。这些问题可以帮助用户更深入地理解和解决部署过程中的挑战。</think>### 如何通过TensorRT将YOLOv8部署到Jetson Nano #### 1. **环境准备** - **硬件要求**:Jetson Nano需开启高性能模式(`sudo nvpmodel -m 0`),并安装JetPack 4.6+(包含TensorRT 7.2.1.6、CUDA 10.2、cuDNN 8.0)[^3]。 - **软件依赖**: - OpenCV ≥3.4.9(建议编译支持CUDA的版本) - PyTorch 1.6+(适配CUDA 10.2) - 安装TensorRT的Python绑定:`pip install nvidia-tensorrt==7.2.3.4` #### 2. **模型转换流程** **步骤1:导出YOLOv8为ONNX** 使用Ultralytics官方工具导出ONNX模型: ```python from ultralytics import YOLO model = YOLO("yolov8n.pt") model.export(format="onnx", dynamic=True, simplify=True) ``` 若遇到`onnxsim`安装失败,可在x86主机上完成此步骤后传输到Nano[^4]。 **步骤2:ONNX转TensorRT Engine** 在Jetson Nano上使用TensorRT的`trtexec`工具生成引擎文件: ```bash trtexec --onnx=yolov8n.onnx --saveEngine=yolov8n.engine --fp16 --workspace=1024 ``` 参数说明: - `--fp16`:启用FP16精度加速 - `--workspace`:分配显存大小(需根据模型调整) #### 3. **部署与推理优化** **代码框架** 基于TensorRT的Python推理代码需包含以下模块: 1. **预处理**:图像归一化、尺寸调整(与训练对齐) 2. **推理**:加载引擎文件并执行`context.execute_v2(bindings)` 3. **后处理**:解析输出张量,应用NMS过滤冗余框 **性能优化建议**: - 使用**CUDA流**实现异步推理 - 启用TensorRT的`layer fusion`优化策略[^2] - 避免频繁内存分配,复用显存缓冲区 #### 4. **常见问题与验证** - **版本冲突**:确保TensorRT、ONNX、PyTorch版本匹配(参考官方兼容性矩阵) - **精度验证**:对比ONNX与TensorRT在相同输入下的输出误差(允许FP16下的微小偏差) - **性能基准测试**:使用`nvtop`监控GPU利用率,目标FPS≥10(640x640输入) #### 5. **参考实现** 建议基于开源项目(如[tensorrtx](https://github.com/wang-xinyu/tensorrtx))修改适配YOLOv8,需注意: - 调整模型输出层的解码逻辑 - 修改anchor配置(若YOLOv8使用动态anchor) ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值