一道动态规划的题目,不出意外的我又不会做(泪目。。。。)下面是我参考别人博客之后写出来的
问题描述
小明喜欢在一个围棋网站上找别人在线对弈。这个网站上所有注册用户都有一个积分,代表他的围棋水平。
小明发现网站的自动对局系统在匹配对手时,只会将积分差恰好是K的两名用户匹配在一起。如果两人分差小于或大于K,系统都不会将他们匹配。
现在小明知道这个网站总共有N名用户,以及他们的积分分别是A1, A2, … AN。
小明想了解最多可能有多少名用户同时在线寻找对手,但是系统却一场对局都匹配不起来(任意两名用户积分差不等于K)?
输入格式
第一行包含两个个整数N和K。
第二行包含N个整数A1, A2, … AN。
对于30%的数据,1 <= N <= 10
对于100%的数据,1 <= N <= 100000, 0 <= Ai <= 100000, 0 <= K <= 100000
输出格式
一个整数,代表答案。
样例输入
10 0
1 4 2 8 5 7 1 4 2 8
样例输出
6
题目解析
- 预处理:准备一个数组,数组开辟100000+1大小,然后索引代表积分,数组值代表此积分的人数。
- 第一种情况:就是当k==0时,就如样例给出的,相当于把这些元素放在一个集合里面(集合具有互异性),答案就是集合的元素个数。
- 第二个答案:这种情况是一般的情况,即k>0的时候,这才需要我们的动态规划算法。
首先,把MAX个数分成了k组,第一组{0,k,2k…},第二组{1,
k+1,2k+1…} 一直到最后一组{k-1,2k-1,…} 各个组之间是互不干扰的,因为需要相差k才会相互影响。
接下来,我们就是一组一组计算了,准备一个临时数组,用来存储各组中各元素出现的次数。
然后,关键部分:动态规划的的状态转移(下面说的p是指当前组中第p个积分,不是说积分为p):
dp[ p ] = max( dp[ p-1 ], dp[ p-2 ] +temp[ p ] )
什么意思呢?dp值表示小于等于 第p个积分值 之中不匹配的最大人数,那第 p 个积分的状态转移就分为:第p个 积分的人不算,用前p-1个积分中的最大值;或者是 第 p-1 个积分的不算, 去算第p-2个积分 加上第p个积分的人数。最后,二者取最大值。
将各组的最大人数累加起来就是答案了。
代码
#include<iostream>
#include<cstring>
#define MAX 100001
using namespace std;
int main(){
int n,k;
scanf("%d%d",&n,&k);
int num[MAX];
memset(num,0,sizeof(num));
int x;
for(int i=0;i<n;i++){
scanf("%d",&x);
num[x]++;
}
int res=0;
if(k==0){
for(int i=0;i<MAX;i++){
if(num[i]!=0){
res++;
}
}
}
else{
int dp[MAX];
int temp[MAX];
int s;
for(int i=0;i<k;i++){
s=0;
for(int j=i;j<MAX;j+=k){
temp[s++]=num[j];
}
dp[0]=temp[0];
for(int p=1;p<s;p++){
if(p==1){
dp[1]=max(dp[0],temp[1]);
}
else{
dp[p]=max(dp[p-1],dp[p-2]+temp[p]);
}
}
res+=dp[s-1];
}
}
printf("%d\n",res);
return 0;
}
希望慢慢进步吧,动态规划的题目我感觉自己还是没吃透。。