索引知识

本文详细探讨了数据库索引的概念,包括其优缺点、本质及分类,重点介绍了B-Tree和Bitmap索引的区别,以及在Oracle数据库中如何有效使用索引。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1索引的基本概念

索引是一种数据库结构,能够就数据库中的某列提供快速查询,而不用检索整个表格。建立索引时,oracle会首先对全表进行搜索,然后把要建立索引的字段排序,并构建构建索引条目(包含字段值和该字段在原表中的地址值rowid),把索引条目存储到索引段中。
An index is a database structure that provides quick lookup of data in a column or columns of a table.
说到底了,这是用空间来换时间,但是查找对于经常要搜索的字段,尤其对于table数据很多的情况下,有索引速度还是快很多。可以形象地把索引类比于百科全书的目录,虽然多了几页目录,但是查找起来不需要一页一页搜寻,速度还是快很多。

2索引的优缺点

优点:
为什么使用索引?索引的目的在于提高查询效率,与我们查阅图书所用的目录是一个道理:先定位到章,然后定位到该章下的一个小节,然后找到页数。
缺点:
占用磁盘空间
自动维护,降低数据写入速度
索引并不一定加快查询速度,尤其是对于比较小的表来说

3索引的本质

通过不断地缩小想要获取数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是说,有了这种索引机制,我们可以总是用同一种查找方式来锁定数据。
索引的本质就是尽量少的磁盘IO次数。

4索引的分类

4.1B-Tree索引(ORACLE默认)

B-Tree是一种平衡树,数据存储在叶子节点上,检索节点上的数据所走的步数长度是一样的,数据结构见下图。
在这里插入图片描述

4.2Bitmap索引

Bitmap类index是存储在一个二维表中,行是rowid,列名称是属性的取值范围,表格中的数据是属性值。具体如下
bitmap
在这里插入图片描述
Bitmap主要用于选定的列中,属性取值范围比较小的,如为性别(male,female),衣服尺寸(S,M,L)等,而且在读取比较多的系统中使用较多。

4.3二者区别

https://www.cnblogs.com/java-learner/p/9567456.html

5使用索引注意事项

  • oracle创建主键时会自动在该列上创建索引
  • 经常进行连接查询的列应该创建索引
  • 使用create index时要将最常查询的列放在最前面
  • 在使用where和join的属性上建立索引
  • 在外键(foreign key)上建立索引

参考文献

https://www.cnblogs.com/java-learner/p/9567456.html

内容概要:本文档详细介绍了一个基于MATLAB实现的跨尺度注意力机制(CSA)结合Transformer编码器的多变量时间序列预测项目。项目旨在精准捕捉多尺度时间序列特征,提升多变量时间序列的预测性能,降低模型计算复杂度与训练时间,增强模型的解释性和可视化能力。通过跨尺度注意力机制,模型可以同时捕获局部细节和全局趋势,显著提升预测精度和泛化能力。文档还探讨了项目面临的挑战,如多尺度特征融合、多变量复杂依赖关系、计算资源瓶颈等问题,并提出了相应的解决方案。此外,项目模型架构包括跨尺度注意力机制模块、Transformer编码器层和输出预测层,文档最后提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,尤其是熟悉MATLAB和深度学习的科研人员、工程师和研究生。 使用场景及目标:①需要处理多变量、多尺度时间序列数据的研究和应用场景,如金融市场分析、气象预测、工业设备监控、交通流量预测等;②希望深入了解跨尺度注意力机制和Transformer编码器在时间序列预测中的应用;③希望通过MATLAB实现高效的多变量时间序列预测模型,提升预测精度和模型解释性。 其他说明:此项目不仅提供了一种新的技术路径来处理复杂的时间序列数据,还推动了多领域多变量时间序列应用的创新。文档中的代码示例和详细的模型描述有助于读者快速理解和复现该项目,促进学术和技术交流。建议读者在实践中结合自己的数据集进行调试和优化,以达到最佳的预测效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值