134. Gas Station (数学)

本文探讨了一个经典的算法问题——加油站问题。该问题要求在一个环状路径中找到一个起点,使得从该点出发能够通过沿途加油完成一圈行程。文章详细介绍了使用反证法理解此问题的思路,并给出了一种高效的算法实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://leetcode.com/problems/gas-station/description/

题目:有N个加油站点构成一个环状,每个站点i加油量为gas[i],从站点i到站点i+1需要耗费有两为cost[i],现要求从哪个站点出发可以成功转一圈回到初始站点,返回该站点,若没有则返回-1;

思路:
这个题要用反证法来理解。算法:
从i开始,j是当前station的指针,sum += gas[j] – cost[j] (从j站加了油,再算上从i开始走到j剩的油,走到j+1站还能剩下多少油)
如果sum < 0,说明从i开始是不行的。那能不能从i..j中间的某个位置开始呢?假设能从k (i <=k<=j)走,那么i..j < 0,若k..j >=0,说明i..k – 1更是<0,那从k处就早该断开了,根本轮不到j。
所以一旦sum<0,i就赋成j + 1,sum归零。
最后total表示能不能走一圈。
这个题算法简单,写起来真是够呛。对数组一快一慢双指针的理解还是不行。注意千万不能出现while (i < 0) { i++, A[i]}这种先++然后取值的情况,必须越界。

class Solution {
public:
    int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
        int sum=0,total=0,len=gas.size(),idex=-1;
        for(int x=0;x<len;x++)
        {
            sum+=gas[x]-cost[x];
            total+=gas[x]-cost[x];
            if(sum<0) sum=0,idex=x;
        }
        return total>=0?idex+1:-1;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机的小粽子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值