1、指针内存错误问题(有关链式存储)
在此之前说一个当时写此实现的一个指针内存错误。
一个指针,不管定义成什么类型,当要去取它的内存模型中的某个东西时,这个指针所指向的内存必须存在,也就是之前给其所指向的内存分配了空间。
当定义:
int *p;
*p = 5; //执行这样的操作是错误的,这是简单的,
//然而复杂的是如下的,定义一个结构体指针
//节点元素
typedef struct node1
{
int data;
struct node1 * next;
}node;
//栈节点
typedef struct stack
{
node * btn,*top;
}stack;
stack *st;
//以下的两个操作都是错误的,将导致segment fault!
st->btn = st->top = NULL;
s->btn = s->top = (node*)malloc(sizeof(node));
因为stack *st;只声明了一个st的指针,系统给其只分配了固定大小(4字节地址大小)的内存,它所指向的内存区域还未分配内存。
【如图分析】
//简单的例子
typedef struct test
{
int a,b;
}test;
test t; //此处系统给其分配了一个test结构体大小的内存
test *p; //此处系统给其分配了一个指针大小的内存(大部分固定为4字节)
t.a = 5;
p->a = 10; //执行错误
2、栈的链式存储结构
/*
* 栈的链式存储结构
* top栈顶指针永远指向栈顶元素的下一个位置
* btn不变,指向栈底
* 栈空的判断为,栈顶 == 栈底
* 初始化时,让栈顶和栈底一起指向一块内存(node)
* 入栈时:总是先将元素放置在栈顶top指向的位置,然后再后移top
* 出栈时:总是先前移top,再取top位置的值
*/
//节点元素
typedef struct node1
{
int data;
struct node1 * next;
}node;
//栈节点
typedef struct stack
{
node * btn,*top;
}stack;
int init_stack(stack *s)
{
s->btn = s->top = (node*)malloc(sizeof(node));
if(!s->btn)
return 0;
s->btn->next = s->top->next = NULL;
return 1;
}
//压栈
void push(stack *s, int data)
{
node *q;
q = (node *)malloc(sizeof(node));
if(!q)
return;
q->next = NULL;
s->top->data = data;
s->top->next = q;
s->top = q;
}
//出栈
int pop(stack *s)
{
node *q,*t;
int ret = -1;
if(s->top == s->btn)
{
printf("empty stack!\n");
}
else
{
t = s->top;
q = s->btn;
while(q->next != t) //寻找top前一个位置的指针
{
q=q->next;
}
ret = q->data; //取top前一位置的值
s->top = q;
//s->top = NULL; 此处应该是s->top->next = NULL;
free(t);
}
return ret;
}
void print_stack(stack *s)
{
node *q;
for(q=s->btn; q!=s->top;q=q->next)
{
printf("%d\n",q->data);
}
}
int main()
{
stack *st;
st = (stack *)malloc(sizeof(stack));
init_stack(st);
int i;
for(i=0;i<5;i++)
{
push(st,i);
}
print_stack(st);
printf("==========\n");
printf("%d\n\n",pop(st));
printf("%d\n\n",pop(st));
printf("%d\n\n",pop(st));
printf("%d\n\n",pop(st));
printf("%d\n\n",pop(st));
printf("%d\n\n",pop(st));
printf("%d\n\n",pop(st));
print_stack(st);
return 1;
}
3、用两栈实现队列、两队列实现栈
两栈实现队列:
【思路】:
若s2空, 则弹出s1数据到s2中,
弹出s2中的数据
若s2不空, 则直接 弹出s2中的数据
//入队
void en_que(int data)
{
push(s1,data);
}
//s1专属进队列
//自己的思路是:将s1入栈到s2,从s2中出一个数后,又将s2入栈到s1,非常耗时!!
int de_que()
{
int ret = -1;
while(s1->top != s1->btn)
push(s2,pop(s1));
if(s2->top == s2->btn)
{
printf("queue is empty\n");
return ret;
}
ret = pop(s2);
while(s2->top != s2->btn)
push(s1,pop(s2));
return ret;
}
//s1专属进队列
//若s2空,则弹出s1数据到s2中,出s2中的数据
//若s2不空,则直接弹出s2中的数据
int de_que_ex()
{
if(s2->top == s2->btn)
{
while(s1->top != s1->btn)
push(s2,pop(s1));
}
if(s2->top == s2->btn)
{
printf("queue is empty\n");
return -1;
}
else
{
return pop(s2);
}
}
两队列实现栈:
在C++ STL中有双向队列deque,当单向的来用就行,设有两个队列A和B,栈的push操作,直接push到A的队尾就行了。栈的pop操作时,将A中的队列依次取出放到B中,取到最后一个时,最后一个不要放到B中,直接删掉,再将B中的值依次放回A中。栈的top操作时,将A中的队列依次取出放到B中,取到最后一个时,将最后一个值记录下来,再将最后一个值放到B中,再将B中的值依次放回到A中。
#include<iostream>
#include <deque>
using namespace std;
template<class T> class Mystack
{
public:
Mystack(){}
~Mystack(){}
void push(T t);
T top();
void pop();
private:
deque<T> A;
deque<T> B;
};
template<class T> void Mystack<T>::push(T t)
{
A.push_back(t);
}
template<class T> T Mystack<T>::top()
{
while(A.size()>1)
{
B.push_back(A.front());
A.pop_front();
}
T tmp=A.front();
B.push_back(A.front());
A.pop_front();
while(B.size()!=0)
{
A.push_back(B.front());
B.pop_front();
}
return tmp;
}
template<class T> void Mystack<T>::pop()
{
while(A.size()>1)
{
B.push_back(A.front());
A.pop_front();
}
A.pop_front();
while(B.size()!=0)
{
A.push_back(B.front());
B.pop_front();
}
}
4、快速排序
【重点】
一次快速排序时,从两边往内移动的两个指针low/high,只需比较low < high
当low==high时,正好比完,而哨兵值(中间值)就应该放在low/high处,记得将low/high返回
//一趟快速排序过程
int quick_sort(int *b, int low, int high)
{
int tmp = b[low];
while(low < high)
{
while(low < high && b[high] >= tmp)
high --;
if(low < high)
b[low++] = b[high];
while(low < high && b[low] <= tmp)
low ++;
if(low < high)
b[high--] = b[low];
}
b[high] = tmp; //重点1
return high; //重点2
}
//递归快速排序
void Q_sort(int *b, int low, int high)
{
int mid;
if(low < high) //重点3
{
mid = quick_sort(b,low,high); //重点4
Q_sort(b,0,mid-1);
Q_sort(b,mid+1,high);
}
}
void q_sort(int *b, int n)
{
Q_sort(b,0,n-1);
}
5、冒泡排序
【算法思路】
用图表达:
//冒泡排序 从小到大的顺序
void bubule(int *b, int n)
{
int i,j;
for(i=n-1;i>0;i--)
{
for(j=0;j<i;j++)
{
//if(b[j] > b[i]) //找到一个最大的给b[i],即是从小到大的顺序
if(b[j] > b[j+1]) //从头到i依次比较相邻数的大小
{
swap2(&b[j],&b[i]);
}
}
}
}
//冒泡排序,带判断标志
void bubule(int *b, int n)
{
int i,j,is_order = 1;
for(i=n-1;i>0;i--)
{
is_order = 1; //每次循环比较之前,设置标志位
for(j=0;j<i;j++)
{
if(b[j] > b[j+1])
{
swap2(&b[j],&b[j+1]);
is_order = 0; //一旦有交换,则清除标志位
}
}
if(is_order)
break;
}
}
6、直接插入排序
【算法思路】:把一个数,插入到一个已经有序的表中。插入时,在有序表中从后往前寻找插入点,顺便移动数据。
//直接插入排序
void insert_sort(int *b, int n)
{
int i,j,tmp;
for(i=1; i<n; i++)
{
tmp = b[i];
for(j=i-1; j>=0 && tmp<b[j]; j--)
{
b[j+1] = b[j];
}
b[j+1] = tmp;
}
}
7、二路插入排序
【算法思路】:就是在直接插入的基础上,寻找插入点的时候利用二分查找的办法。
//二路插入排序
void twoway_insert_sort(int *b, int n)
{
int i,j,tmp,low,high,mid;
for(i=1; i<n; i++)
{
tmp = b[i];
//二路查找
low = 0;
high = i-1;
while(low <= high)
{
mid = (low+high)/2;
if(tmp > b[mid])
low = mid+1;
else
high = mid-1;
}
for(j=i-1;j>=low;--j) //最终当low > high的时候,我们需要从i~low的位置移动,即插入的位置在low/high+1的位置上。
b[j+1] = b[j];
b[j+1] = tmp; //b[high+1] = tmp; b[low] = tmp;都可以
}
}
8、希尔插入排序
【算法思路】:通过一个增量dk,将数组分成S = { k,k+dk,k+2dk,k+3dk…. }(k的范围是0~dk-1),这样子就是将S这个序列进行直接插入排序了。然后随着增量dk的减小,最终减到1,一次直接插入排序排好。
//一趟希尔排序shell sort
void shellsort(int *b, int n, int dk)
{
int i,j,k,tmp;
for(i=dk; i<n; ++i) //①
{
if(b[i] < b[i-dk])
{
tmp = b[i];
for(j=i-dk; j>=0 && b[j]>tmp; j-=dk) //②
{
b[j+dk] = b[j];
}
b[j+dk] = tmp;
}
}
}
void shell_sort(int *b, int n)
{
int dk[] = {5,3,1};
int i;
for(i=0;i<3;++i)
{
shellsort(b,n,dk[i]);
}
}
9、二分查找
//二路查找(查找c,返回在b中的位置)
int twoway_search(int *b, int n, int c)
{
int low,high,mid;
low = 0;
high = n-1;
while(low <= high) //重点
{
mid = (low + high)/2;
if(b[mid] == c)
return mid;
if(b[mid] < c)
low = mid +1;
else if(b[mid > c])
high = mid -1;
}
return -1; //未找到
}
10、二叉查找树(排序树、搜索树)->红黑树
左节点值 < 根 < 右节点值
二叉查找树的一般性质:
1.在一棵二叉查找树上,执行查找、插入、删除等操作,的时间复杂度为O(lgn)。
因为,一棵由n个结点,随机构造的二叉查找树的高度为lgn,所以顺理成章,一般操作的执行时间为O(lgn)。
2.但若是一棵具有n个结点的线性链,则此些操作最坏情况运行时间为O(n)。
11、选择排序
选择排序的思路:
①初始状态:无序区为R[1..n],有序区为空。
②第1趟排序
在无序区*R[1..n]中选出关键字最小的记录R[k],将它与无序区的第1个记录R[1]交换*,使R[1..1]和R[2..n]分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。
……
③第i趟排序
第i趟排序开始时,当前有序区和无序区分别为R[1..i-1]和R(i..n)。该趟排序从当前无序区中选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。
选择排序是不稳定的排序方法(比如序列[5, 5, 3]第一次就将第一个[5]与[3]交换,导致第一个5挪动到第二个5后面)。
堆排序
数组从1开始计算,0舍弃。
1、调整堆
//a为堆数组,i为需要调整的子树的根节点指针,size为数组中元素的个数
void HeapAdjust(int *a,int i,int size) //调整堆
{
int lchild=2*i; //i的左孩子节点序号
int rchild=2*i+1; //i的右孩子节点序号
int max=i; //记录根和其左右孩子的最大值指针
if(i<=size/2) //从第一个非叶子节点开始调整
{
if(lchild<=size && a[lchild]>a[max])
{
max=lchild;
}
if(rchild<=size && a[rchild]>a[max])
{
max=rchild;
}
if(max!=i)
{
swap(a[i],a[max]);
HeapAdjust(a,max,size); //避免调整之后以max为父节点的子树不是堆
}
}
}
2、对一个初始的数组建立堆
//a为堆数组,size为数组中元素的个数
void BuildHeap(int *a,int size) //建立堆
{
int i;
for(i = size/2; i >= 1; i--) //从第一个非叶子结点开始建立堆
{
HeapAdjust(a,i,size);
}
}
3、堆排序:建立堆,然后交换堆顶元素和最后一个元素,从新调整堆
void HeapSort(int *a,int size) //堆排序
{
int i;
BuildHeap(a,size);
for(i=size; i>=1; i--)
{
//cout<<a[1]<<" ";
swap(a[1],a[i]); //交换堆顶和最后一个元素,即每次将剩余元素中的最大者放到最后面
HeapAdjust(a,1,i-1); //重新调整堆顶节点成为大顶堆
}
}
12、二叉树
创建二叉树,按先序遍历创建 12 45 0 65 23 0 0 45 先序创建。
void Create_BiTree(BiTree **t)
{
int a;
BiTree *p;
scanf("%d",&a);
if(a == 0)
*t = NULL;
else
{
p = (BiTree *)malloc(sizeof(BiTree));
if(!p)
exit(1);
p->data = a;
*t = p; //将*t指向p所申请的的内存,此处将改变根节点的指针,因此必须传入根节点的指针的指针。
Create_Tree(&(*t)->left);
Create_Tree(&(*t)->right);
}
}
中序遍历二叉树(非递归算法)
1:
当二叉树不空或者栈不空时,循环
{
当二叉树不空,当前节点进栈, 然后指向左子树
当二叉树空时,出栈一个节点,访问之,然后指向右子树
}
void InOrderTraverse_noRec(BiTree t)
{
BiTree stack[100],tmp;
int top,base;
top = base = 0;
while(t || top != base)
{
if(t) //二叉树不空 进栈->往左走一步
{
stack[top++] = t;
t = t->left;
}
else //二叉树空 出栈->访问->向右走一步
{
t = stack[--top];
printf("%d\n",t->data);
t = t->right;
}
}
}
2:
根节点进栈
栈不空时,循环
{
得到栈顶元素,栈顶指针不空,循环,向左走到头,进栈每个节点的左孩子
出栈空节点
然后,栈不空时出栈,访问之,再入栈右孩子指针
}
void InOrderTraverse_noRec2(BiTree t)
{
BiTree stack[100],tmp;
int top,base;
top = base = 0;
stack[top++] = t; //根节点进栈
while(top != base) //栈不空时,循环
{
while(tmp = stack[top-1]) //栈顶元素不空时,进栈所有左孩子节点
{
stack[top++] = tmp->left;
}
top--; //出栈空节点(包括while循环进的最后一个空节点,或下面进栈的一个空的右孩子)
if(top != base)
{
tmp = stack[--top];
printf("%d\n",tmp->data);
stack[top++] = tmp->right;
}
}
}
后续遍历二叉树(非递归算法)
void PostOrderTraverse(BiTree t)
{
if(t)
{
PostOrderTraverse(t->left);
PostOrderTraverse(t->right);
printf("%d\n",t->data);
}
}
void PostOrderTraverse_noRec(BiTree t)
{
BiTree stack[100];
int flag[100],top,base;
top = base = 0;
while(t || top != base) //二叉树不空或者栈不空
{
//压栈直到左子树为空
while(t)
{
stack[top++] = t;
flag[top-1] = 0;
t = t->left;
}
//栈不空并且右子树已经访问过了就该访问根节点了
while(top != base && flag[top-1] == 1)
{
t = stack[--top];
printf("%d\n",t->data);
}
//栈不空时取栈顶元素的右孩子
if(top != base)
{
flag[top-1] = 1;
t = stack[top-1]->right;
}
}
}
// 后序遍历二叉树的非递归算法
void postorder2(Bitree *t)
{
Bitree *s[32]; // s是指针数组,数组中元素为二叉树节点的指针
int tag[32]; // s中相对位置的元素的tag: 0或1
int top = -1;
while (t!=NULL || top != -1)
{
// 压栈直到左子树为空
while (t != NULL)
{
s[++top] = t;
tag[top] = 0;
t = t->lchild;
}
// 当栈非空,并且栈顶元素tag为1时,出栈并访问
while (top!=-1 && tag[top]==1)
{
printf("%c ", s[top--]->data);
}
// 当栈非空时,将栈顶tag置1,并指向栈顶元素的右孩子
if (top != -1)
{
tag[top] = 1;
t = s[top]->rchild;
}
}
}
13、图
使用深度优先搜索求简单路径
求一个顶点v到顶点s的简单路径(没有回路的路径)
例如:求a到e的简单路径
先从a出发,然后访问b,再访问c,此时记住a->b->c的这个路径,
当c又访问a时,此时c已经遍历完了,还没有找到e,因此将c出路径,
再退回到b,b的临节点都访问了,因此将b出路径。
再退回到a,访问未访问的d,将d加入路径,
然后再访问e,加入路径
已经访问到了e,输出路径:a->d->e
算法伪代码:
void DFSsearch(int v, int s, char *path)
{
visit[v] = TRUE; //访问第v个节点
Append(path, v); //将v节点加入到路径
for(w=FirstAdjVex(v), w!=0 && !found; w=NextAdjVex(v)) //从v的第一个邻节点到最后一个邻节点
{
if(w == s) //找到s
{
found = TRUE;
Append(path, w);
}
else if(!visit[w]) //w未被访问到
{
DFSsearch(w,s,path);
}
}
if(!found)
{
Delete(v,path); //当v这个节点的所有邻节点都访问完了,还未找到,则将v退出路径
}
}
使用广度优先搜索求最短路径
例:求顶点3到顶点5的最短路径,应该是3->1->4->
从3开始广度遍历,(广度遍历每次都是增加一个深度,需要一个队列辅助实现)
1)将链队列的节点改为双链,包含一个pre指向深度遍历时的父节点。
2)修改入队列的操作,插入新的队尾结点时,令其pre指向刚刚出队列的结点。
3)修改出队列的操作,出队列时,仅移动队头指针,而不删除。
4)当找到5时,从5开始顺着pre指针到队列头,此即其路径。