Conv、BN、Relu融合

神经网络量化入门–Folding BN ReLU

上一篇文章介绍了量化训练的基本流程,本文介绍量化中如何把BatchNorm和ReLU合并到Conv中。

Folding BatchNorm

BatchNorm是Google提出的一种加速神经网络训练的技术,在很多网络中基本是标配。

回忆一下,BatchNorm其实就是在每一层输出的时候做了一遍归一化操作:
Input: Values of x over a mini-batch: B = { x 1 . . x m } B = \{x_1 ..x_m\} B={x1..xm} ; Parameters to be learned: γ \gamma γ, β \beta β
Output: { y i = B N B ( x i ) } \{y_i = BN_B(x_i)\} {yi=BNB(xi)}

μ B ← 1 m ∑ i = 1 m x i \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} μBm1i=1mxi // mini-batch mean
σ B 2 ← 1 m ∑ i = 1 m ( x i − μ B ) 2 \sigma_{\mathcal{B}}^{2} \leftarrow \frac{1}{m} \sum_{i=1}^{m}(x_{i}-\mu_{\mathcal{B}})^{2} σB2m1i=1m(xiμB)2 // mini-batch variance
x ^ i ← x i − μ B σ B 2 + ϵ \hat{x}_{i} \leftarrow \frac{x_{i}-\mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}} x^iσB2+ϵ xiμB // normalize
y i ← γ x ^ i + β ≡ B N γ , β ( x i ) y_{i} \leftarrow \gamma \hat{x}_{i}+\beta \equiv BN_{\gamma, \beta}(x_{i}) yiγx^i+βBNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

其中 x i x_i xi是网络中间某一层的激活值, μ B \mu_{\mathcal{B}} μB σ B 2 \sigma_{\mathcal{B}}^{2} σB2分别是其均值和方差, y i y_i yi则是过了BN后的输出。

一般卷积层与BN合并

Folding BatchNorm不是量化才有的操作,在一般的网络中,为了加速网络推理,我们也可以把BN合并到Conv中。

合并的过程是这样的。假设有一个已经训练好的Conv和BN:
在这里插入图片描述

假设Conv的weight和bias分别是 W W W b b b实际上卷积的kernal就是weight,当weight和图片fold后的做完einsum之后再加上bias就是输出)。那么卷积层的输出为:
y = ∑ i = 1 N w i x i + b (1) y = \sum_{i=1}^{N} w_i x_i + b \tag{1} y=i=1Nwixi+b(1)
图中 BN 层的均值和标准差可以表示为 μ y \mu_y μy σ y \sigma_y σy,那么根据论文的表述,BN 层的输出为:

y b n = γ y ^ + β = γ y − μ y σ y 2 + ϵ + β (2) y_{bn} = \gamma \hat{y} + \beta \\ = \gamma \frac{y - \mu_y}{\sqrt{\sigma_y^2 + \epsilon}} + \beta \tag{2} ybn=γy^+β=γσy2+ϵ yμy+β(2)

然后我们把 (1) 代入 (2) 中可以得到:

y b n = γ σ y 2 + ϵ ( ∑ i = 1 N w i x i + b − μ y ) + β (3) y_{bn} = \frac{\gamma}{\sqrt{\sigma_y^2 + \epsilon}} \left( \sum_{i=1}^{N} w_i x_i + b - \mu_y \right) + \beta \tag{3} ybn=σy2+ϵ γ(i=1Nwixi+bμy)+β(3)

我们用 γ ′ \gamma' γ 来表示 γ σ y 2 + ϵ \frac{\gamma}{\sqrt{\sigma_y^2 + \epsilon}} σy2+ϵ γ,那么 (3) 可以简化为:

y b n = γ ′ ( ∑ i = 1 N w i x i + b − μ y ) + β = ∑ i = 1 N γ ′ w i x i + γ ′ ( b − μ y ) + β (4) y_{bn} = \gamma' \left( \sum_{i=1}^{N} w_i x_i + b - \mu_y \right) + \beta \\ = \sum_{i=1}^{N} \gamma' w_i x_i + \gamma' (b - \mu_y) + \beta \tag{4} ybn=γ(i=1Nwixi+bμy)+β=i=1Nγwixi+γ(bμy)+β(4)

发现没有,(4) 式形式上跟 (1) 式一样一样,因此它本质上也是一个 Conv 运算,我们只需要用 w i ′ = γ ′ w i w_i' = \gamma' w_i wi=γwi b ′ = γ ′ ( b − μ y ) + β b' = \gamma' (b - \mu_y) + \beta b=γ(bμy)+β 来作为原来卷积的 weight 和 bias,就相当于把 BN 的操作合并到了 Conv 里面。实际 inference 的时候,由于 BN 层的参数已经固定了,因此可以把 BN 层 folding 到 Conv 里面,省去 BN 层的计算开销。

量化感知训练BatchNorm Folding

量化网络时可以用同样的方法把BN合并到Conv中。

如果量化时不想更新BN的参数 (比如后训练量化),那我们就先把BN合并到Conv中,直接量化新的Conv即可。

如果量化时需要更新BN的参数 (比如量化感知训练),那也很好处理。Google把这个流程的心法写在一张图上了:
在这里插入图片描述
由于实际inference的时候,BN是folding到Conv中的,因此在量化训练的时候也需要模拟这个操作,得到新的weight和bias,并用新的Conv估计量化误差来回传梯度。

Conv与ReLU合并

在量化中,Conv + ReLU这样的结构一般也是合并成一个Conv进行运算的,而这一点在全精度模型中则办不到。

在之前的文章中说过,ReLU前后应该使用同一个scale和zeropoint。这是因为ReLU本身没有做任何的数学运算,只是一个截断函数,如果使用不同的scale和zeropoint,会导致无法量化回float域。

看下图这个例子。假设ReLU前的数值范围是 r i n ∈ [ − 1 , 1 ] r_{in} \in[-1,1] rin[1,1],那么经过ReLU后的数值范围是 r o u t ∈ [ 0 , 1 ] r_{out} \in[0,1] rout[0,1] 。假设量化到uint8类型,即 [ 0 , 255 ] [0, 255] [0,255],那么ReLU前后的scale分别为 S i n = 2 255 S_{in}=\frac{2}{255} Sin=2552 S o u t = 1 255 S_{out}=\frac{1}{255} Sout=2551,zp分别为 Z P i n = 128 ZP_{in}=128 ZPin=128 Z P o u t = 0 ZP_{out}=0 ZPout=0。再假设ReLU前的浮点数是 r i n = 0.5 r_{in}=0.5 rin=0.5,那么经过ReLU后的值依然是 0.5 0.5 0.5。换算成整型的话,ReLU前的整数是 q i n = 192 q_{in}=192 qin=192,由于 q i n ∈ [ 0 , 255 ] q_{in} \in[0, 255] qin[0,255],因此过完ReLU后的数值依然是 192 192 192。但是, S i n S_{in} Sin Z P i n ZP_{in} ZPin已经发生了变化,因此反量化后的 r i n r_{in} rin不再是 0.5 0.5 0.5,而这不是我们想要的。所以,如果想要保证量化的ReLU和浮点型的ReLU之间的一致性,就必须保证 S i n S_{in} Sin S o u t S_{out} Sout以及 Z P i n ZP_{in} ZPin Z P o u t ZP_{out} ZPout是一致的。
在这里插入图片描述
但是保证前后的scale和zp一致,没规定一定得用 S i n S_{in} Sin Z P i n ZP_{in} ZPin,我们一样可以用ReLU之后的scale和zp。不过,使用哪一个scale和zp,意义完全不一样。如果使用ReLU之后的scale和zp,那我们就可以用量化本身的截断功能来实现ReLU的作用。

想要理解这一点,需要回顾一下量化的基本公式:
注意,这里的round除了把float型四舍五入转成int型外,还需要保证 q q q的数值在特定范围内「例如 0 ~ 255 0~255 0255」,相当于要做一遍clip操作。因此,这个公式更准确的写法应该是「假设量化到uint8数值」:
而ReLU本身就是在做clip。所以,我们才能用量化的截断功能来模拟ReLU。
在这里插入图片描述
再举个例子。
假设有一个上图所示的Conv+ReLU的结构,其中,Conv后的数值范围是 r i n ∈ [ − 1 , 1 ] r_{in} \in[-1,1] rin[1,1]。在前面的文章中,我们都是用ReLU前的数值来统计minmax并计算scale和zp,并把该scale和zp沿用到ReLU之后。这部分的计算可以参照图中上半部分。

但现在,我们想在ReLU之后统计minmax,并用ReLU后的scale和zp作为ReLU前的scale和zp「即Conv后面的scale和zp」,结果会怎样呢?
看图中下半部分,假设Conv后的数值是 r i n = − 0.5 r_{in}=-0.5 rin=0.5,此时,由于Conv之后的scale和zp变成了 S o u t = 1 255 S_{out}=\frac{1}{255} Sout=2551 Z P o u t = 0 ZP_{out}=0 ZPout=0,因此,量化的整型数值为:
注意,上面的量化过程中,我们执行了截断操作,把 q i n q_{in} qin − 128 -128 128截断成 0 0 0,而这一步本来应该是在ReLU里面计算的!然后,我们如果根据 S o u t S_{out} Sout Z P o u t ZP_{out} ZPout反量化回去,就会得到 r o u t = 0 r_{out}=0 rout=0,而它正是原先ReLU计算后得到的数值。

因此,通过在Conv后直接使用ReLU后的scale和zp,我们实现了将ReLU合并到Conv里面的过程。

那对于ReLU外的其他激活函数,是否可以同样合并到Conv里面呢?这取决于其他函数是否也只是在做clip操作,例如ReLU6也有同样的性质。但对于其他绝大部分函数来说,由于它们本身包含其他数学运算,因此就不具备类似性质。

总结

这篇文章主要介绍了如何把BatchNorm和ReLU合并成一个Conv,从而加速量化推理。按照计划,应该和之前的文章一样,给出代码实现。但我在测试代码的时候发现有一些bug需要解决,正好也控制一下篇幅,下篇文章会给出相关的代码实现。

转载

  • https://mp.weixin.qq.com/s?__biz=Mzg4ODA3MDkyMA==&mid=2247483746&idx=1&sn=18eebe5df9d43c487adbdf7da25d11ca&chksm=ceceadf868049d48123510f37841fac69b7355d2e606bef9c6363e62fdf3004212aeee49533a#rd
  • https://mp.weixin.qq.com/s?__biz=Mzg4ODA3MDkyMA==&mid=2247483692&idx=1&sn=3e28db4881d591f4e6a66c83d4213823&chksm=cf81f74bf8f67e5d0f2a98fd7bf7a91864d14010d88a5ed89120b7b4fcd94fc34789f0d0db9a&scene=21#wechat_redirect
  • https://mp.weixin.qq.com/s?__biz=Mzg4ODA3MDkyMA==&mid=2247483723&idx=1&sn=ad844b16f6d7a7eb006a01fa6201c9c7&chksm=cf81f72cf8f67e3a1349d53518187652d84328117f19ec9a3fa19b693ffe4e8f43142f1c8740&scene=21#wechat_redirect
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值