- 博客(9)
- 收藏
- 关注
原创 Spark的一些操作
1.建立字典:两种方法 方法一:file = sc.textFile(add_keyWordWithFeature)Dict = {}def wordSplitAndBuilDict(x): return DictAction = file.map(lambda line:wordSplitAndBuilDict(json.loads(line)))这种方法返回的是许多dict组成的
2017-07-20 16:53:52
344
转载 A Neural Probabilistic Language Model笔记
1.经典之paper,虽然之前一直有了解,但是未及细读,现在终于有时间好好研究一下了。 2.首先是一个概率模型: 3.然后是两个假设条件:First, it is not taking into account contexts farther than 1 or 2 words,1 second it is not taking into account the “similarity”
2017-07-14 11:14:08
974
转载 GBDT
作为一名小白,被GBDT和Xgboost整的一脸懵逼,现写下一些笔记,所有内容都来自各大神的榜文,此文仅用于个人阅读笔记,如有不对,欢迎指出~~~~首先要明确一下什么是GB(Gradient boosting),什么是DT(Decision Tree)。DT就不说了,周志华老师讲的很明白。现在说一下GB: 维基上的伪代码,简单明了。一开始最让我懵逼的就是2.2,用残差的梯度构造一个学习器,所
2017-07-13 12:24:08
721
转载 xgboost与gbdt
1.都是利用了boosting思想,最小化残差(偏差)。 2.GBDT的基学习器一定是DT,而且是利用残差梯度构造基学习器,基学习器是先训练好的,再确定叶节点的输出(树的预测值,也就是权重w)。Xgboost的基学习器可以使树模型,也可以是其他模型,而且利用了残差的一阶导和二阶导;使用树模型时,分裂点是通过代价函数一步步算出来的,而不是利用GBDT直接利用残差梯度构造的树结构。 3.都可以增加s
2017-07-13 02:05:17
304
转载 xgboost理解
读 https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf 笔记: ——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
2017-07-11 21:49:06
393
翻译 tensorflow-rnn代码解读
本文仅供自己学习记录使用 原文地址:http://blog.csdn.net/mylove0414/article/details/55805974 感谢博主———路一瓢的博客# -*- coding:utf-8 -*-import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport tensorflow
2017-06-29 16:35:14
1850
翻译 tensorflow rnn阅读笔记
只是随便写写,fang’bian’zi’ji ptb_word_lm.py: 1. 一些参数的定义 num_steps = time_step1.在rnn中进行dropout时,对于rnn的部分不进行dropout,也就是说从t-1时候的状态传递到t时刻进行计算时,这个中间不进行memory的dropout;仅在同一个t时刻中,多层cell之间传递信息的时候进行dropout. 2.
2017-06-28 16:00:20
276
翻译 欢迎使用CSDN-markdown编辑器
欢迎使用Markdown编辑器写博客本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦:Markdown和扩展Markdown简洁的语法代码块高亮图片链接和图片上传LaTex数学公式UML序列图和流程图离线写博客导入导出Markdown文件丰富的快捷键快捷键加粗 Ctrl + B 斜体 Ctrl + I 引用 Ctrl
2017-06-28 15:48:31
173
原创 Classifying MNIST digits using Logistic Regression 代码个人,理解
一. 参数维度W = size(n_in, n_out), n_in代表一个样本的dimension,一般都是(1,n),那么此时n_in=n;如果是(n,m)就要处理成(n*m,1)的形式。二. negative_log_likelihood 函数return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]), y]
2017-01-17 12:17:46
290
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人