tensorflow rnn阅读笔记

本文详细介绍了 PTB 词语言模型中的关键步骤和技术细节,包括参数定义、Dropout 的使用策略、Embedding 层查找操作及 TensorFlow 中变量复用的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

只是随便写写,fang’bian’zi’ji
ptb_word_lm.py:
1. 一些参数的定义
num_steps = time_step

1.在rnn中进行dropout时,对于rnn的部分不进行dropout,也就是说从t-1时候的状态传递到t时刻进行计算时,这个中间不进行memory的dropout;仅在同一个t时刻中,多层cell之间传递信息的时候进行dropout.
2. embedding_lookup(embedding,input_ids):就是根据input_ids中的id,寻找embedding中的对应元素。这里输出的是一个三维的矩阵,对应着lstm输入数据的格式(batch_size,time_step,embedding_size)
3. tf.get_variable_scope().reuse_variables()这行代码不可少,不然会报错,应该是因为同一命名域(variable_scope)内不允许存在多个同一名字的变量的原因。
4. (cell_output, state) = cell(inputs[:, time_step, :], state)这是模型搭建的重点,inputs[:, time_step, :]是一个二维的矩阵,state保存了c和h的信息。实现了并行运算。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值