F1.36 视频编码的关键技术

本文介绍了视频编码的关键技术,包括预测、变换、量化和熵编码。变换通过去除图像像素间空间相关性实现数据压缩,量化则依据变换域的统计特性压缩码率,而熵编码利用零游程优化编码效率。ZigZag扫描在量化后形成更长的零游程,提升编码效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

编解码器包括编码器和解码器。编码器(Encoder)是指压缩信号的设备或程序;解码器(Decoder)是指解压缩信号的设备或程序;编解码器(Codec)是指编解码器对。编码的主要流程包括预测、变换、量化、熵编码,解码流程与之互逆,如图所示。编解码器中涉及到的关键技术主要包括预测、变换、量化、熵编码,下面详细讲述这几个方面。

第一,为什么要变换?变换可以去除图像像素之间的空间相关性。变换是一种线性运算,可以将图像从空间域转换到变换域或者频率域。空间域图像的能量往往分布相对比较均匀,经过变换后,变换域中图像的变换系数间近似是统计独立的,基本去除了相关性,并且能量集中在直流和低频率的变换系数,高频率变换系数的能量很小,甚至大部分高拟系数能量接近于零。所以,在变换域进行滤波、进行与视觉特性相匹配的量化及熵编码,可以实现图像数据的有效压缩。变换的核心点是找到一个完美的正交矩阵,那什么样的正交变换矩阵才算是完美的呢?最佳的变换矩阵应该是,变换矩阵中每行或每列的基矢量和图像的统计特性相匹配,即应和图像本身的特征矢量相匹配。

第二,为什么要量化?通常变换离不开量化,因为图像从空间域矩阵变换到变换域的变换系数矩阵,其系数个数并未减少,数据量也不会减少,因此并不能直接压缩数据。为了压缩码率,还应当根据图像信号在变换域

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

福优学苑@音视频+流媒体

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值