麻省理工学院的研究:辩论让AI机器人变得更聪明

麻省理工学院的研究发现,通过让多个AI系统对问题进行辩论,可提高AI响应的准确性,减少幻觉。这种方法通过类似小组讨论的方式改善逻辑推理和事实核查,如在MMLU测试中,多代理模型得分高于单个模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

“社会之脑”的方法可以减少AI模型的幻觉,提高结果

麻省理工学院的研究团队发现,与只使用单个AI系统相比,多个AI系统对问题的答案进行辩论可以显著提高响应的准确性。

在题为《通过多代理辩论改善语言模型的真实性和推理》的论文中,研究人员发现利用多个AI系统的处理有助于纠正事实错误并改善逻辑推理。

麻省理工学院的科学家与谷歌DeepMind的研究员Igor Mordatch一起,将这个过程命名为“多代理社会”,并发现该方法可以减少生成输出中的幻觉。这种做法甚至可以应用于现有的黑箱模型,如OpenAI的ChatGPT。

在这个过程中,会产生多轮回应并受到批评。该模型生成给定问题的答案,然后结合其他代理的反馈来更新自己的响应。研究人员发现这个过程改善了最终的输出,因为它类似于小组讨论的结果——个人做出回应以达成统一的结论。

该方法还可以用于组合不同的语言模型——ChatGPT 与 Google Bard 的研究。虽然这两个模型都对示例提示生成了错误的响应,但它们都能够生成正确的最终答案。

 通过采用多代理社会方法,麻省理工学院的研究团队在自然语言处理、数学和谜题解决的多种基准测试中取得了优异的结果。

例如,在流行的MMLU基准测试中,使用多个代理的模型得分准确率为71,而只使用一个单独代理的模型得分准确率为64。

 “我们的流程征用了大量人工智能模型,每个模型都为解决问题带来了独特的见解。虽然它们的初步反应可能似乎被截断,或可能包含错误,但这些模型可以通过仔细研究它们的同行提供的反应来磨砺并改进自己的答案,”麻省理工学院博士生、该论文的主要作者Yilun Du说。“随着这些人工智能模型参与对话和审议,它们能够更好地识别和纠正问题,提高解决问题能力,更好地验证它们的反应的精确性。”

您可以在GitHub上获取多代理项目中使用的代码。

文章来源:AI BUSINESS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值