在指定区间里,找二进制数含指定个数‘1’的个数 - 小赛是一名幸运的程序员。 虽然他成功帮助小朋友以最快时间夺回了狼堡,但是面试官却打算和他说拜拜了。

本文描述了一个有趣的编程挑战,面试官希望找到一个数,该数在指定范围内,并且二进制表示中恰好有m个1,以解开被顽皮儿子锁定的手机。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述
									

小赛是一名幸运的程序员。

虽然他成功帮助小朋友以最快时间夺回了狼堡,但是面试官却打算和他说拜拜了。

理由是——游戏天赋太高,有不务正业、走火入魔的倾向QAQ……

尽管小赛很不能接受这个理由,可是却只能心灰意冷地吃下这个结果。

然而,在他即将走出门的时候,面试官给了幸运的小赛一个最后的机会。

原来,面试官的手机被他调皮的儿子小明用一个数字作为密码锁上了。

小明只记得这个数字的十进制范围是l~r,且这个数的二进制表示中恰有m个1,却不记得确切的数字了。

面试官可急坏了。这才有了小赛一个将功赎过的机会。

他想要让小赛算出,他最坏情况下,要试多少次密码才能确保打开手机呢?

请输出这个次数。

输入

输入仅一行,包含三个整数l,r,m,其中l,r表示这个数的十进制范围是l~r,m表示这个数的二进制表示中有m个1.

数据保证——

对于30%的测试点,0<=l<=r<=20,0<=m<=5,

对于70%的测试点,0<=l<=r<=1000,0<=m<=10,

对于100%的测试点,0<=l<=r<=2000000,0<=m<=24.

样例输入

1 4 2

输出

输出一行,包含一个整数,表示面试官最坏情况下,要试多少次密码才能确保打开手机。

如果小明记错了(也就是不存在任何一个数满足),则输出"-1"(不含引号)。

样例输出

1


代码:


<think>嗯,用户想用C++统计指定区间内某个数x出现的次数。我需要仔细想想有哪些方法可以实现这个功能。首先,我得回忆一下C++中的基本算法数据结构操作。 首先,最直接的方法可能是遍历数组中的每个元素,然后检查它是否在指定区间内。比如,区间是[left, right],那么对于每个元素,只要它大于等于left并且小于等于right,就算作符合条件。这种方法的时间复杂度是$O(n)$,对于小规模数据来应该没问题。不过如果数据量很大,可能需要更高效的方法,比如先排序然后用二分查确定边界,这样时间复杂度可以降到$O(\log n)$,但排序本身是$O(n \log n)$,所以如果只需要查询一次的话,可能直接遍历更划算。 用户提供的引用有几个相关的例子。比如引用[2]中的代码,统计大于平均值的个数,用的是遍历数组并比较每个元素。而引用[3]则是统计误差范围内的数,用绝对值判断是否在区间内。这两个例子都是遍历的方法,看来用户可能对这种方法比较熟悉。 不过如果用户的数据是已经排序好的,或者需要多次查询不同的区间,那么使用二分查会更高效。C++标准库中的lower_boundupper_bound函数可以用来到第一个不小于left的位置第一个大于right的位置,两者之差就是区间内的元素个数。这需要数组是有序的,所以如果数据未排序,需要先排序。例如,对于有序数组arr,使用lower_bound(arr.begin(), arr.end(), left)得到左边界,upper_bound(arr.begin(), arr.end(), right)得到右边界,然后相减得到次数。 另外,用户可能还需要考虑区间的开闭情况,比如是否包端点。比如,如果区间是左闭右开,那么需要用lower_bound左边界,upper_bound右边界。但如果是全闭合的区间,如[left, right],那么可能需要调整upper_bound的参数为right+1?或者直接用upper_bound(right)的结果减去lower_bound(left)的结果? 还有,用户的问题中提到了“x出现次数”,但可能实际是区间内的所有数,而不仅仅是x。需要明确用户的需求。假设用户的意思是统计区间内所有满足条件的数,而不是特定的x,可能之前的例子中的x是变量名,比如在引用[3]中,mx是输入的参数,用来判断元素是否在[m-x, m+x]区间内。所以用户的问题可能是统计区间[left, right]内的元素个数,而不是特定的x值的出现次数。不过题目中的描述可能有歧义,需要确认。 假设用户确实是想统计某个数值x在区间内出现的次数,比如数组中有多个x,统计这些x是否在某个区间。但这种情况比较特殊,可能用户的实际需求是统计区间内的所有元素,不管具体值是什么,只要在区间内就算。需要根据问题描述再分析。 根据用户的问题:“统计指定区间内x的个数”,可能有两种理解:1)在数组的某个区间(如索引范围)内统计x出现的次数;2)在整个数组中统计数值在指定区间[left, right]内的元素个数。需要根据上下文判断。根据提供的引用例子,比如引用[3]中的代码统计的是数组中元素值在[m-x, m+x]范围内的数量,所以可能用户的问题属于第二种情况,即统计整个数组中数值在某个区间内的元素个数。 因此,回答需要涵盖这两种情况吗?或者用户可能混淆了两种需求?比如,用户可能想问的是在数组的索引区间内查某个值x的出现次数,或者是在整个数组中查数值在某个值区间内的次数。需要明确。 根据引用中的例子,比如引用[3]中的代码,是统计数组中元素的值是否在某个数区间内,所以推测用户的需求是第二种情况:统计数组中元素值在指定区间内的数量,而不仅仅是某个特定的x值。因此,回答应该围绕如何统计数组中数值在区间[left, right]内的元素个数。 接下来,我需要整理可能的实现方法。第一种是遍历数组,逐个判断;第二种是如果数组已排序,使用二分查优化。需要给出这两种方法的代码示例,并比较它们的优缺点。 比如,直接遍历的方法适用于任何情况,无论数组是否有序,时间复杂度为$O(n)$。而排序后的二分查方法适用于多次查询的情况,因为排序的时间复杂度是$O(n \log n)$,但每次查询的时间是$O(\log n)$。 此外,还需要注意边界条件的处理,比如区间的闭合情况。例如,当使用lower_boundupper_bound时,lower_bound返回的是第一个不小于left的元素的位置,upper_bound返回的是第一个大于right的元素的位置,因此两者之间的元素数量就是符合left <= value <= right的元素个数。 例如,对于已排序的数组arr: int count = upper_bound(arr.begin(), arr.end(), right) - lower_bound(arr.begin(), arr.end(), left); 这样就可以得到区间[left, right]内的元素数量。 另外,对于未排序的数组,可能需要使用标准库中的count_if函数,结合lambda表达式,例如: int count = count_if(arr.begin(), arr.end(), [left, right](int x){ return x >= left && x <= right; }); 这种方法同样时间复杂度是O(n),但代码更简洁。 总结起来,回答应该包括以下几种方法: 1. 直接遍历法:适用于未排序的数组,单次查询。 2. 使用STL算法count_if:简化代码,同样O(n)时间复杂度。 3. 排序后使用二分查:适用于多次查询,提升效率。 然后根据用户提供的引用,比如引用[2]引用[3]中的遍历方法,可以引用这些例子来明遍历的实现方式。同时,可以提到引用[1]中的内置函数,但可能不直接相关,除非统计的是特定值的二进制1个数,但用户的问题是关于区间统计,所以可能不需要引用[1]。 在代码示例方面,可以给出两种方法的代码,比如遍历法排序+二分法,并解释各自的适用场景。此外,提醒用户注意数组是否已排序,以及如何处理边界条件。 最后,生成相关问题,比如如何优化多次查询、如何处理浮点数的区间统计等。</think>### C++统计指定区间内数值出现次数的方法 统计数组在指定区间$[left, right]$内数值的出现次数,可以通过以下两种方式实现: --- #### **方法1:直接遍历法** 时间复杂度:$O(n)$,适合未排序数组的单次查询 ```cpp #include <iostream> using namespace std; int countInRange(int arr[], int n, int left, int right) { int cnt = 0; for (int i = 0; i < n; i++) { if (arr[i] >= left && arr[i] <= right) { cnt++; } } return cnt; } ``` --- #### **方法2:排序+二分查法** 时间复杂度:预处理$O(n \log n)$,单次查询$O(\log n)$,适合多次区间查询 ```cpp #include <algorithm> #include <iostream> using namespace std; int main() { int arr[] = {2, 3, 5, 7, 11}; int n = sizeof(arr)/sizeof(arr[0]); sort(arr, arr + n); // 必须预先排序 int left = 3, right = 7; auto lower = lower_bound(arr, arr + n, left); auto upper = upper_bound(arr, arr + n, right); int count = upper - lower; cout << "区间内元素个数:" << count; // 输出3(3,5,7) return 0; } ``` --- #### **方法3:使用STL算法`count_if`** 结合Lambda表达式简化代码: ```cpp #include <algorithm> #include <iostream> using namespace std; int main() { int arr[] = {2, 3, 5, 7, 11}; int left = 3, right = 7; int count = count_if(arr, arr + 5, [left, right](int x) { return x >= left && x <= right; }); cout << "区间内元素个数:" << count; // 输出3 return 0; } ``` --- ### **关键点总结** 1. **直接遍历法**适用于未排序数据(如引用[3]的误差统计实现)[^3] 2. **二分查法**需预先排序,适合频繁查询场景 3. `count_if`提供更简洁的语法,但本质仍是遍历操作[^2] ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值