FDTD方法理论推导与仿真实践

1、推导磁场分量的更新方程

对磁场分量的时间导数应用中心差分公式,将时间中心点取为 $ n\Delta t $。以
$$
\frac{\partial H_x}{\partial t} = \frac{1}{\mu_x} \left( \frac{\partial E_y}{\partial z} - \frac{\partial E_z}{\partial y} - \sigma_{mx} H_x - M_{ix} \right)
$$
为例,基于场位置用有限差分近似可得:

$$
\frac{H_x^{n + 1/2}(i, j, k) - H_x^{n - 1/2}(i, j, k)}{\Delta t}
= \frac{1}{\mu_x(i, j, k)} \cdot \frac{E_y^n(i, j, k + 1) - E_y^n(i, j, k)}{\Delta z}
- \frac{1}{\mu_x(i, j, k)} \cdot \frac{E_z^n(i, j + 1, k) - E_z^n(i, j, k)}{\Delta y}
- \frac{\sigma_{mx}(i, j, k)}{\mu_x(i, j, k)} H_x^n(i, j, k)
- \frac{1}{\mu_x(i, j, k)} M_{ix}^n(i, j, k)
$$

经过一些处理,将未来项 $ H_x^{n + 1/2}(i, j, k) $ 移到左边,其他项移到右边,得到:

$$
H_x^{n + 1/2}(i, j, k) = \frac{2\mu_x(i, j, k) - \Delta t \sigma_{mx}(i, j, k)}{2\mu_x(i, j, k) + \Delta t \sigma_{mx}(i, j, k)} H_x^{n - 1/2}(i, j, k)
+ \frac{2\Delta t}{[2\mu_x(i, j, k) + \Delta t \sigma_{mx}(i, j, k)] \Delta z} [E_y^n(i, j, k + 1) - E_y^n(i, j, k)]
$$

对于其他磁场分量 $ H_y $ 和 $ H_z $ 也可按相同方法推导更新方程,如 $ H_y $ 的更新方程:

$$
H_y^{n + 1/2}(i, j, k) = H_y^{n - 1/2}(i, j, k)
+ \frac{2\Delta t}{\mu \Delta x \ln(\Delta x / a)} [E_z^n(i + 1, j, k) - E_z^n(i, j, k)]
- \frac{\Delta t}{\mu \Delta z} [E_x^n(i, j, k + 1) - E_x^n(i, j, k)]
$$

并可写成与通用更新方程相同形式:

$$
H_y^{n + 1/2}(i, j, k) = C_{hyh}(i, j, k) \cdot H_y^{n - 1/2}(i, j, k)
+ C_{hyez}(i, j, k) \cdot [E_z^n(i + 1, j, k) - E_z^n(i, j, k)]
+ C_{hyex}(i, j, k) \cdot [E_x^n(i, j, k + 1) - E_x^n(i, j, k)]
$$

其中:

  • $ C_{hyh}(i, j, k) = 1 $
  • $ C_{hyez}(i, j, k) = \frac{2\Delta t}{\mu_y(i, j, k) \Delta x \ln(\Delta x / a)} $
  • $ C_{hyex}(i, j, k) = -\frac{\Delta t}{\mu_y(i, j, k) \Delta z} $

2、文件fdt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值