50、CUDA编程:从基础到应用

CUDA编程:从基础到应用

1. CUDA编程基础

在GPU架构中,GPC(Graphics Processing Cluster)将一组物理上相邻的SIMD(Single Instruction, Multiple Data)处理器组合在一起,其目标是实现多SIMD处理器间线程的高效协作。硬件提供了专用网络,用于集群内线程间的快速数据交换。例如,Hopper架构支持分布式共享内存(DSM),它将不同SIMD处理器的共享内存组合成单一虚拟地址空间,使SIMD处理器间可直接进行数据交换,无需通过全局内存。

Nvidia GPU P100 (Pascal) V100 (Volta) A100 (Ampere) H100 (Hopper)
number of transistors 15.3·10⁹ 21.1·10⁹ 54.2·10⁹ 80·10⁹
GPU die size 610 mm² 828 mm² 815 mm² 814 mm²
SIMD processors 56
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值